
Computers & Security 140 (2024) 103788

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

DawnGNN: Documentation augmented windows malware detection using

graph neural network

Pengbin Feng a,∗, Le Gai a, Li Yang b, Qin Wang c, Teng Li a, Ning Xi a, Jianfeng Ma a

a School of Cyber Engineering, Xidian University, Xi’an, Shaanxi, China
b School of Computer Science & Technology, Xidian University, Xi’an, Shaanxi, China
c University of New South Wales, Sydney, New South Wales, Australia

A R T I C L E I N F O A B S T R A C T

Keywords:

Windows malware detection

Graph neural network

BERT-based embedding

Dynamic API call

Application Program Interface (API) calls are widely used in dynamic Windows malware analysis to characterize
the run-time behavior of malware. Researchers have proposed various approaches to mine semantic information
from API calls to improve the performance of malware analysis. However, with increasingly sophisticated
malware, the exploration of new semantic dimensions for API calls is never-ending. In this paper, we find that
the official Windows API documentation is an unexplored information source in malware detection. Therefore,
we propose a novel documentation-augmented Windows malware detection framework DawnGNN using the
pre-trained semantic enhanced mechanism and graph neural network. First, it converts the API sequences into
API graphs for further contextual information extraction. Next, we crawl API documentation from the official
website and employ the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model to
encode functionality descriptions as API embeddings. Finally, it feeds the API graphs with API node attributes
into the Graph Attention Network (GAT) classifier to perform Windows malware detection. Moreover, we verify
the effectiveness of DawnGNN on three public datasets. Experimental results demonstrate the effectiveness of
DawnGNN. Semantic information from the official API documentation is promising in the Windows malware
detection domain.
1. Introduction

Over the past decades, malware has been expanding rapidly in per-

sonal computers and networks. According to a recent report [1], a total
of 172,146 never-before-seen malware variants were identified in the
first six months of 2023 by SonicWall, more than in any other year
and an average of 956 per day. Malware would steal private data,
perform unauthorized access, and cause system corruption, posing a
serious threat to users. Therefore, it is necessary to devise an effective
automatic detection method for preventing the spread of malware, es-

pecially the newly emerging variants.

Malware detection approaches can be mainly divided into static and
dynamic analysis. Static analysis methods directly extract specific fea-

tures [2–4], such as header information, opcode sequences, and static
Application Program Interface (API) calls from executable files, but
packer, code obfuscation, and metamorphism techniques could make
the static analysis less effective [5]. On the contrary, dynamic anal-

ysis extracts behavior information (including network traffic, registry

* Corresponding author.

E-mail addresses: pbfeng@xidian.edu.cn (P. Feng), xdutanzhe@gmail.com (L. Gai), yangli@xidian.edu.cn (L. Yang), qinwangtech@gmail.com (Q. Wang),

operations, system calls, etc.) while running programs in an isolated
environment [6]. Compared with static analysis, the observation of ex-

ecuted behavior makes dynamic analysis effective against various code
obfuscation techniques [7].

The Windows API calls are widely used in dynamic malware de-

tection [8–10]. A Windows program usually calls many system APIs
during runtime, which characterizes all program behaviors including
file operation, network access, registry modification, etc. These APIs
constitute API sequences that usually contain distinguishable contextual
patterns for malware detection [7]. Thus, researchers have proposed
many machine learning or deep learning-based approaches that capture
the meaningful relationship information among API calls to perform
malware detection [11–13]. Unfortunately, most of these studies often
only consider the API name or frequency of API usage but ignore se-

mantic information about the API calls, which cannot fully express the
meaning of the API call sequences.

Ce et al. [14] point out that the feature mining of API sequence is
not sufficient, which would cause some malware to evade detection.
Available online 29 February 2024
0167-4048/© 2024 Elsevier Ltd. All rights reserved.

tengli@xidian.edu.cn (T. Li), nxi@xidian.edu.cn (N. Xi), jfma@mail.xidian.edu.cn (J

https://doi.org/10.1016/j.cose.2024.103788

Received 11 September 2023; Received in revised form 24 January 2024; Accepted
. Ma).

23 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:pbfeng@xidian.edu.cn
mailto:xdutanzhe@gmail.com
mailto:yangli@xidian.edu.cn
mailto:qinwangtech@gmail.com
mailto:tengli@xidian.edu.cn
mailto:nxi@xidian.edu.cn
mailto:jfma@mail.xidian.edu.cn
https://doi.org/10.1016/j.cose.2024.103788
https://doi.org/10.1016/j.cose.2024.103788
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2024.103788&domain=pdf

P. Feng, L. Gai, L. Yang et al.

Therefore, researchers have proposed to capture various information,
such as API semantic categories [14], API parameters [15], process
graphs [16], etc., for improving malware detection performance. Ce et
al. [14] propose to extract semantic information including category, ac-

tion, operation object, etc., from the API calls and construct semantic
chains from API sequences to improve malware detection performance.
DMalNet [17] proposes to combine semantic information from differ-

ent types of parameters and graph learning to improve the performance
of malware analysis. CruParamer [15] conducts fine-grained analysis
on API parameters and employs rule-based and clustering-based pa-

rameter classification to construct parameter-augmented API sequences
for further mining semantic information from parameters. MalPro [16]

proposes a logistic regression-based parameter weighting mechanism to
improve the semantics of API parameters and constructs process graphs
from behavior logs to enhance malware detection. Mal-Bert-GCN [18]

similarly leverages the BERT model to encode API sequences as node
embeddings for directed process graphs.

When considering increasingly sophisticated malware, the explo-

ration of new semantic dimensions and detection frameworks is never-

ending.

Insufficient Feature Mining. Except for considering API name and fre-

quency of API usage, researchers have proposed to leverage additional
information such as semantics within API name, pre-defined seman-

tic categories, parameter value-induced sensitivity level, cross-process
interaction relationship, etc., for enhancing the current malware detec-

tion method. However, experts-defined sensitive semantics need regular
updates, which is labor intensive. Multi-stage feature processing on ex-

isting detection features increases the burden at the inference stage.
Meanwhile, the exploration of new semantic features continues to be
necessary for the arms race between attack and defense. Inspired by the
software development process, we find that the official API documen-

tation is a new semantic dimension, that could better characterize API
semantics and supplement existing detection features.

New Detection Framework. Graph neural network (GNN) has been
proven to be effective in capturing critical information from program
representation graphs [19] within cybersecurity tasks. In addition, ap-

plying GNN algorithms directly on graph structures is superior to
sequence-based and tree-based approaches in the vulnerability detec-

tion domain [20]. The pre-trained Bidirectional Encoder Representa-

tions from Transformers (BERT) [21] model is widely used to encode
semantic information from natural languages, which could automati-

cally infer critical information from API documentation. The combi-

nation of intrinsic message-passing mechanisms within GNN algorithms
and BERT-derived critical information could help to identify potentially
risky behaviors.

In this paper, we focus on API-based dynamic malware analysis and
try to explore additional semantic information from API sequences to
fight against increasingly sophisticated Windows malware. Inspired by
the success of Android API documentation in the identification of source
and sink methods [22], we found that the official Windows API docu-

mentation is an unexplored information source in malware detection.
With the proven effectiveness in various Natural Language Process-

ing (NLP) tasks, the pre-trained BERT model could be leveraged to
capture semantic information from the natural language described in
API documentation. Consequently, we propose a novel Windows mal-

ware detection framework, documentation augmented Windows mal-

ware detection using graph neural network, named DawnGNN. First,
it converts the API call sequences to API graphs for further extract-

ing the contextual information. Second, we designed a semi-automatic
method to crawl API documentation from the Microsoft official website.
Next, the collected API documentation is inputted into the pre-trained
BERT model for encoding newly discovered semantic information as
API node embeddings. Finally, the Graph Attention Network (GAT)
classifier takes the API graphs with node semantic attributes as in-

put to perform Windows malware detection. On three public Windows
2

malware benchmarks, we verify the effectiveness of our BERT-based en-
Computers & Security 140 (2024) 103788

Fig. 1. Desktop operating system market share worldwide from StatCounter.

coding mechanism in improving the performance of malware detection.
Experimental results also show that our proposed framework outper-

forms the existing detection methods only using raw API call sequences.
In addition, we verify that the official API documentation is an effec-

tive information source in Windows malware detection, which could be
complementary to current malware analysis methods. Our combination
framework of graph learning and BERT-based encoding mechanism is
promising in Windows malware detection.

In summary, we make the following contributions:

• We find that the official API documentation is an unexplored and
effective information source for Windows malware detection and
design a documentation-augmented approach.

• We propose a novel dynamic Windows malware detection frame-

work, namely DawnGNN, that utilizes the BERT-based semantic
enhanced mechanism and graph neural network to perform mal-

ware detection.

• We adopt multiple API embedding techniques and GNN algorithms
to verify the effectiveness and explore the best performance of the
proposed detection framework.

• We evaluate our approach on three public Windows malware
benchmarks. Experimental results verify the effectiveness of our
BERT-based semantic enhanced mechanism and design framework.

The rest of the paper is organized as follows. Section 2 presents
the background about Windows malware and API. Section 3 detailed
describes the system design of DawnGNN. Section 4 discusses the ex-

perimental results. Section 6 summarizes the related works. Section 5

presents the limitation of DawnGNN. The conclusion of this work is
provided in Section 7.

2. Background

In this section, we discuss the threats of Windows malware and in-

troduce the API with official documentation.

2.1. The threats of windows malware

According to the StatCounter website statistical data, Windows, de-

veloped by Microsoft, stands as the most widely used and widely dis-

tributed desktop operating system [23]. The market share distribution
for the desktop operating systems is shown in Fig. 1. Consequently, the
popularity and widespread usage of the Windows operating system (OS)
make it an attractive target for cybercriminals. Malware targeting the
Windows platform has increased enormously in recent years. According
to AV-TEST statistics [24], until September 2023, the count of Windows

malware samples has reached 1.07 billion.

P. Feng, L. Gai, L. Yang et al.

Fig. 2. Official API documentation for Windows API Process32NextW. Text in-

formation in red box denote API functionality description.

Windows malware mainly includes the following categories: Virus.

A computer virus usually hides within another seemingly harmless pro-

gram and generates copies and inserts them into other programs. Worm.

A worm usually performs as stand-alone malware and actively prop-

agates itself via networks to infect other files or computers. Rootkits.

Rootkits can remain hidden by altering the system settings of targeting
OS and making the harmful processes invisible to normal users. Back-

door. A backdoor allows attackers to gain unauthorized remote access to
a victim’s computer to bypass its protection mechanisms. Trojan horse. A
Trojan horse usually camouflages as a regular, benign program or util-

ity to mislead victims and activates hidden destructive functions when
the application starts. Ransomware. Ransomware mainly focuses on de-

manding a ransom from the victims by encrypting key files or locking
the whole system to prevent access.

2.2. Windows API with official documentation

The Windows API is an important part of the Windows OS and plays
a key role in connecting Windows-based programs with Windows ker-

nel and hardware [25]. The collection of all API functions is known
as Win32 API. Apart from some console programs, all Windows pro-

grams can interact with Windows API and access predefined tasks such
as opening and closing a file, displaying a prompt dialog box, storing
computation results to files, and accelerating task processing via start-

ing multiple threads. The system resources like file systems, processes,
threads, network communication, and devices, are unified and managed
by the OS kernel, and programs need to employ Windows API to accom-

plish their tasks. All available API functions are provided via dynamic
link libraries, i.e., in .dll files, and commonly used libraries include Ker-

nel32.dll, User32.dll, and GDI32.dll. The extraction and analysis of API
calls are useful in determining the behavior and functions of a program.

We find that the official API documentation contains the seman-

tic description for API functionality and carries more information than
the API name, which can be used to enhance current API call-based
Windows malware detection methods. The API Process32NextW is one
representative potentially malicious API call [26]. Its partial official
documentation is shown in Fig. 2. From Fig. 2, the sentence “Re-

trieves information...” in the red box can accurately describe the API
functionality, which can also be used for semantic representation in
Windows malware detection. In this paper, we design a documentation-

augmented Windows malware detection framework to verify the effec-

tiveness of API documentation. In addition, we leave the inclusion of
semantic information for other auxiliary descriptions within the docu-

mentation page like parameters, and return values in malware detection
as future work.

3. System design

The goal of DawnGNN is to leverage the official API documentation
3

information for enhancing dynamic Windows malware detection using
Computers & Security 140 (2024) 103788

graph neural network and the BERT model. Fig. 3 shows the overall ar-

chitecture of DawnGNN, which consists of three components, namely,
API Graph Constructor, API2Vec Embedding Layer and GNN Classifier.
Firstly, the API graph constructor leverages Cuckoo Sandbox [27] to
perform automatic dynamic analysis on Windows Portable Executable
(PE) programs to extract API call sequences. API calls, indicating the
interactions between programs and system resource usage, are widely
used to make unified behavior representations for malware detection.
Then, it adopts structural dependencies within API sequences to build
API graphs. Next, the API2Vec embedding layer generates API attributes
by encoding official API documentation via the BERT-based language
model. Finally, GNN is adopted to learn contextual information from
attributed API graphs for performing effective malware detection.

3.1. API graph constructor

After obtaining the run-time API call sequences from Windows PE
programs, this component converts the call sequences into graphs to
capture the structural dependencies between APIs. Formally, given a set
of API sequences, each program is represented as a graph 𝐺 = {𝑉 , 𝐷},
where 𝑉 is a set of nodes and 𝑣 ∈ 𝑉 denotes a unique API call, and
𝐷 ⊆ 𝑉 × 𝑉 represents a set of directed edges, where an edge ⃖⃖⃖⃖⃖⃖⃗𝑣𝑖𝑣𝑗 indi-

cate a sequential connection between API calls. The attribute matrix is
defined as 𝑋 = {⋯ ; 𝑥𝑖; ⋯ ; }, where 𝑥𝑖 is the attribute of 𝑖-th node. The
adjacency matrix of graph 𝐺 is represented as 𝐴 ∈ℤ𝑁𝐺×𝑁𝐺 , where 𝑁𝐺

is the count of all API nodes. Thus, the API call graph maintains all API
calls with their sequence information.

To construct the graph, we first collect API calls from all Windows
programs as an API sequence set. Then, we construct the API graph by
treating the sequence orders as call relationships, which could be im-

proved by precisely API parameter matching. To further illustrate the
process, Fig. 4 shows a segment of the collected API sequence from a
sample of Trojan malware [28], which is often disguised as legitimate
software and performs unauthorized behaviors. The API sequence con-

tains six API calls: ‘ntcreatefile’, ‘ldrgetprocedureaddress’,
‘setfileattributesw’, ‘getfileattributesw’, ‘mesagebox-

timeouta’ and ‘ntterminateprocess’. In the API sequence, the API
call ‘ntcreatefile’ is followed by ‘mesageboxtimeouta’, which
means a directed edge is created from the ‘ntcreatefile’ node to
‘mesageboxtimeouta’ node.

3.2. API2Vec embedding layer

In this paper, we generate API embeddings via learning semantic
information from crawled official Windows API documentation. In ad-

dition, attributes like the parameters of the API function, the location
of the API within its sequence, and code semantic characteristics within
the API implementation, can be easily added to the node attribute to
further improve malware classification performance. The pre-trained
BERT model [21] has been proven to be effective in various NLP tasks,
which is suitable for processing API documentation. Firstly, we design
a semi-automatic method to crawl API documentation from the offi-

cial website1 via analyzing the website page layout structure. These
documents briefly summarize the functionality of every API in nature
language, which represents an effective information source for semantic
information extraction. Then, the BERT model has the ability to gener-

ate API embeddings directly from these language descriptions.

After manually analyzing the official API website, we found that
most websites share similar layout structures. Thus, we developed
XML Path Language (XPath) parser scripts to extract all API names
with corresponding description documentation. To counter the complex
anti-crawl mechanism of the Microsoft website, we manually save the
website page covering all API categories. Next, we parse the category
1 https://learn .microsoft .com /en -us /windows /win32 /api.

https://learn.microsoft.com/en-us/windows/win32/api

Computers & Security 140 (2024) 103788P. Feng, L. Gai, L. Yang et al.

Fig. 3. The architecture of DawnGNN system.
Fig. 4. The workflow of API graph constructor.

Fig. 5. Total number of words for Windows API documentation.

website to collect every API category Uniform Resource Locator (URL).
Then, the API category URL is iteratively parsed to collect header file
URLs for API documentation extraction. Finally, we obtain the most API
documentation without sparse distribution cases, like Windows driver
API or out-of-date API. For the remaining API, we manually search on-

line to collect the description. Finally, we crawled 32763 Windows APIs
with corresponding description documentation. We plot the distribu-

tion of the number of words for Windows API documentation in Fig. 5,
which exhibits great diversity and contains sufficient information. We
also plot the word cloud of Windows API documentation in Fig. 6, which
covers the main functionality provided by Windows OS.

After building the API documentation corpus, we leverage the pre-

trained BERT model to capture the features and encode the semantic
representation of each Windows API. In order to learn the context re-

lationships between different words within the API documentation, we
perform the masked language model (MLM) task. We present the de-

tailed process of the MLM task for API documentation in Fig. 7. The
4

[CLS] and [SEP] tags are added to the API documentation, which repre-
Fig. 6. Word cloud of Windows API documentation.

sents the beginning of sentences and sentence separation respectively.
In one API description, eighty percent of the chosen words are masked
by [MASK] (mask-out tokens), ten percent are kept unchanged, and
the remaining ten percent are replaced with other words (corrupted to-

kens). Then, the multi-layer bidirectional transformer encoder within
BERT processes the input, predicts the masked-out tokens, and outputs
a probability for a particular token 𝑡 = [MASK] via a fully connected
layer followed by the last transformer encoder. The cross-entropy loss
function is formalized as:

𝐿𝑏𝑒𝑟𝑡(𝜃𝑏) = −
𝑀∑
𝑖=1

log(𝑚 =𝑚𝑖|𝜃𝑏),𝑚𝑖 ∈ [1,2, ..., |𝑀|], (1)

where 𝜃𝑏 represents the parameters of the transformer encoder and
output layer within BERT, and 𝑀 denotes the collection of masked
tokens during the training phase. In each self-attention layer within
BERT, an input token updates its embedding by computing the attention
weights with other connected tokens’ embeddings. In this way, each to-

ken’s embedding captures context-sensitive semantic information and
changes with its location and context. Thus, the BERT model can learn
the semantic information of API documentation. When pre-training is
completed, we input the API’s corresponding official functionality de-

scription into the BERT model and treat the hidden state of the last layer
as the semantic embedding of that API.

Specifically, the original API documentation contains additional
words such as the API name “The NotifyAddrChange function...”, abbrevi-

ations “(ARP)”, annotations “(Unicode)”, etc., which are meaningless to
the functional description and are not represented in nature language.
We therefore remove these additional words to ensure that the BERT

model could accurately capture the API semantic. Alternatively, we

Computers & Security 140 (2024) 103788P. Feng, L. Gai, L. Yang et al.

Fig. 7. Pre-trained BERT with MLM task for API documentation.

Fig. 8. API Graph Structure Modeling with GAT.
leverage the one-hot encoding and Word2vec static embedding mech-

anism to generate API node attributes directly from the collected API
sequences. Next, we compare the BERT encoding mechanism with the
above two mechanisms to highlight the importance of semantic infor-

mation.

3.3. GNN classifier

After the processing of the API2Vec Embedding Layer component, we
obtain a number of dynamic API graphs with corresponding node at-

tributes. Then, the GAT [29] classifier is trained on these API graphs
to extract the structural information and further perform Windows mal-
5

ware detection. GAT is a graph neural network based on an attention-
based message-passing mechanism. This attention mechanism allows
GAT to adaptive allocate attention weights to neighbor nodes. Next, it
leverages the weighted sum of neighbor nodes to update the represen-

tation of the current node. In addition, GAT has the advantage of strong
generalization for directed graphs.

The network structure of the GAT is shown in Fig. 8. As shown in
Fig. 8, at first, each API’s official documentation within the API graph
is fed into BERT to extract semantic embedding. Then, the API node
embeddings and API graph structure are used as the input of GAT to
compute graph embedding with structure and semantic information.
During the iterative process of every layer within GAT, the semantic
embedding of an API node is passed to its neighbor nodes. With the

help of the multi-head attention mechanism, each API node can focus

P. Feng, L. Gai, L. Yang et al.

on more critical neighbor nodes. Given two connected API nodes 𝑖 and
𝑗, the attention weight 𝛼 at attention head 𝑡 and 𝑙-th layer structure is
calculated according to the following formula:

𝛼𝑡𝑖,𝑗 =
exp(ReLU(𝐹𝑎[𝑊𝑡𝐻

𝑙
𝑖
||𝑊𝑡ℎ

𝑙
𝑗
]))

∑
𝑐∈𝑅𝑖

exp(ReLU(𝐹𝑎[𝑊𝑡𝐻
𝑙
𝑖
||𝑊𝑡ℎ

𝑙
𝑐]))

, (2)

where ℎ𝑙 denotes the hidden representation of an API node at the 𝑙-
th layer, ℎ0 equals the semantic embedding of an API node generated
by the BERT model, 𝑊𝑚 represents the learnable parameters at 𝑡-th
attention head, 𝐹𝑎 is a feedforward neural network, ReLU indicate the
rectifier activation function, || denotes the concatenation operation, and
𝑅𝑖 represents the neighbor nodes of API node 𝑖. Then, the update pro-

cess of each API node’s embedding based on the attention mechanism
is formalized as follows:

ℎ𝑙+1
𝑖

= ‖𝑇
𝑡=1𝜎(

∑
𝑗∈𝑅𝑖

𝛼𝑡𝑖,𝑗𝑊𝑡ℎ
𝑙
𝑗), (3)

where 𝑇 denotes the number of attention heads, 𝑡 represents the 𝑡-th
attention head. Finally, GAT updates the API node embeddings of the
API graph and sums the graph semantic embedding 𝑠𝐺 as follows:

𝑠𝐺 =
𝑁𝐺∑
𝑖=0

ℎ𝐿𝑖 . (4)

The final prediction classification is performed via a Multilayer Percep-

tron (MLP) model, which can be represented as:

𝑌 = MLP(𝑠𝐺|𝜃𝑚𝑙𝑝), (5)

where 𝜃𝑚𝑙𝑝 denotes the learnable parameters of MLP model, 𝑌 repre-

sents the final classification label malware or benign.

In this paper, we leverage the GNN model to generate graph em-

bedding [30] via encoding all node hidden representations and graph
structure information into low-dimensional space. The node hidden
representation is transformed from aggregating local neighbor node in-

formation. DawnGNN also adopts Graph Convolutional Network (GCN)
and Graph Isomorphism Network (GIN), and compares their perfor-

mance to identify the most effective mechanism in malware detection.
GCN is another representative GNN, where node hidden representation
is calculated via the following formulas:

𝐻𝑙+1 = ReLU(�̂�𝐻𝑙𝑊 𝑙) (6)

where 𝐻𝑙 indicates the hidden representation matrix at the 𝑙-layer for
all nodes, and 𝐻0 denotes the all API node embeddings generated by
the API2Vec Embedding Layer component. 𝑊 𝑙 is the learnable weight
parameters of the 𝑙-layer GCN. �̂� = �̃�− 1

2 �̃��̃�− 1
2 , where �̃� denotes the

degree matrix, and �̃� =𝐴 + 𝐼𝑠. 𝐼𝑠 is the identity matrix. GIN adopts an
MLP model to aggregate comprehensive information, which is formal-

ized as:

ℎ𝑙+1
𝑖

= MLP𝑙+1((1 + 𝜖𝑙)ℎ𝑙𝑖 +
∑

𝑗∈𝑅(𝑖)
ℎ𝑙𝑗), (7)

where 𝜖𝑡 represents scalar learnable parameters.

4. Experiments and evaluation

In this section, we comprehensively evaluate our proposed system
DawnGNN via various experiments. In the following, we first describe
the experiment settings and dataset used in DawnGNN. And then, we
discuss the results of our experiments.

4.1. Experimental setup and dataset

The proposed framework DawnGNN was implemented and tested
6

on a computer running Ubuntu 20.04 (64-bit) with Intel(R) Core (TM)
Computers & Security 140 (2024) 103788

Table I

Three datasets of API calls for experimental evaluation.

Dataset
of Malicious

Samples

of Benign

Samples

Released

Date

MalBehavD-V1 [26] 1,285 1,285 2022

PE_APICALLS [31] 452 101 2019

APIMDS [32] 23,080 300 2015

Table II

Statistics of generated API graphs on three datasets.

Dataset label Avg. # of Nodes Avg. # of Edges

MalBehavD-V1 malware 41.54 34.61

benign 42.61 31.22

PE_APICALLS malware 37.87 29.19

benign 19.64 28.10

APIMDS malware 108.37 30.27

benign 42.68 31.68

i7-12700 CPU @ 2.10 GHz, 16.0 GB RAM, NVIDIA RTX 3060, and 512
GB for the hard disk drive. DawnGNN was implemented in Python pro-

gramming language version 3.8.10 with PyTorch 2.0.0 and Transform-

ers 4.28.1 framework and other libraries such as Scikit-learn, Numpy,
Pandas, and Requests have been also used. The framework takes se-

quences of API calls extracted from Windows exe files as input.

We collected three existing datasets of malicious and normal API
calls for our experimental evaluation. The information of these datasets
is summarized in Table I. As described in Section 3.1, we generate API
graphs based on collected run-time API call sequences. The statistics
of generated API graphs on three datasets are shown in Table II. From
Table II, we can observe that the API graphs are sparse forms, which
is suitable for graph classification tasks. Using different datasets allows
us to evaluate the malware detection performance of DawnGNN from
multiple dimensions. Specifically, we randomly shuffle the dataset and
split 80% for the training, 10% for validation, and the rest 10% for
testing.

4.2. Measure metrics

We evaluate the Windows malware detection performance of
DawnGNN with the following five metrics: precision, recall, true nega-

tive rate, accuracy, and F1-score. These metrics are computed via true
positive (TP), true negative (TN), false positive (FP), and false negatives
(FN). In the Windows malware detection scene, TP denotes the count
of correctly identified malicious exe files, and TN denotes the count of
correctly detected benign exe files. FP indicates the count of misidenti-

fied malicious exe files, and FN denotes the count of missed malicious
exe files. The above measure metrics are calculated as follows:

Precision = TP

TP + FP
(8)

Recall = TP

TP+ FN
(9)

True negative rate (TNR) = TN

TN+ FP
(10)

Accuracy (Acc) = TP + TN

TP + TN+ FP+ FN
(11)

F1-score (F1) = 2 × Precision× Recall

Precision+ Recall
(12)

4.3. Performance of malware detection

In this paper, DawnGNN performs Windows malware detection via
graph neural network and BERT-based semantic enhanced mechanism.
Therefore, in this experiment, we comprehensively evaluate the effec-
tiveness of the two main components.

P. Feng, L. Gai, L. Yang et al.

Table III

Detection performance comparison with different detection methods in
dataset MalBehavD-V1.

Detection method Precision Recall TNR Acc F1

one-hot + RF 0.9009 0.9494 0.8908 0.9203 0.9231

one-hot + LSTM 0.9150 0.9469 0.9106 0.9283 0.9295

one-hot + GAT 0.9195 0.9586 0.9074 0.9339 0.9368

Word2Vec + LSTM 0.9323 0.9661 0.9277 0.9441 0.9475

Word2Vec + GAT 0.9559 0.9532 0.9436 0.9432 0.9543

BERTsmall + LSTM 0.9609 0.9584 0.9512 0.9508 0.9595

BERTsmall + GAT 0.9667 0.9756 0.9527 0.9607 0.9683

BERTbase + LSTM 0.9632 0.9615 0.9553 0.9535 0.9618

BERTbase + GAT 0.9697 0.9788 0.9556 0.9638 0.9711

The BERTsmall and BERTbase represent different versions small and base

of the pre-trained BERT encoding mechanism.

Firstly, we compare the BERT-based encoding mechanism with one-

hot and Word2Vec-based encoding methods to highlight the effective-

ness of semantic information extracted from API documentation. In the
one-hot encoding method, each API call is transformed into a binary
vector where each position represents a unique API call. The dimension
of the binary vector is equal to the count of all collected APIs. In the
Word2Vec-based encoding method, we treat each API call as a word
and use a neural network model to learn word associations from a large
set of API sequences.

Next, we compare the graph feature-based detection method with
the statistical and sequence feature-based detection methods to illus-

trate the effectiveness of the design of graph feature learning. We
combine the one-hot vector representation of API call sequences with
the Random Forest (RF) model as the statistical feature-based detection
method. We leverage the long short-term memory (LSTM) model to han-

dle API sequences, which constructs the typical sequence feature-based
detection method. In particular, the LSTM model requires API encoding
mechanisms before inputting API sequences, which could be one of the
three encoding mechanisms.

Specifically, we compare the detection methods mentioned above
in the symmetric dataset MalBehavD-V1. We set the Word2Vec and RF
algorithms in the default setting. For the BERT-based encoding mech-

anism, we select the base and small versions according to our ex-

periment environment. Specifically, we perform the MLM task on the
collected official functionality descriptions with bert_base_uncased and
bert_small as the initial pre-trained model and extract the last hidden
layer as the API embedding. The dimensions of the generated API em-

beddings are 512 and 768, respectively. As there are multiple versions
of the BERT model and many variant models, such as RoBERTa [33] and
SENTENCE-BERT [34], we leave the exploration of the optimal encod-

ing mechanism as a future work. For LSTM, we refer to the parameter
settings within the existing detection method [35].

The Windows malware detection performance with different encod-

ing mechanisms and feature structures are shown in Table III. From
Table III, we can observe that our BERT-based semantic enhanced
mechanism improves the malware detection performance under every
type of learning model. This illustrates that API documentation con-

tains rich semantic information for identifying Windows malware. The
BERT in base version outperforms the small version, which illustrates
that larger API embeddings carry more precision semantic information
in our API documentation encoding case. In addition, the pre-trained
BERT model has the ability to extract context-sensitive information
from API documentation. From Table III, we can also observe that the
graph feature learning method is superior to the statistical and sequence
feature-based methods, in each of the three encoding mechanisms. This
illustrates that the graph feature-based method considers the struc-

ture information, improving the detection performance compared to the
method that only considers sequence or statistical information.

We also evaluate the effectiveness of DawnGNN with different en-

coding mechanisms in datasets PE_APICALLS and APIMDS. The Win-
7

dows malware detection performance in the two datasets is shown in
Computers & Security 140 (2024) 103788

Table IV. From Table IV, we can observe our BERT-based encoding
mechanism improves the malware detection performance in the two
imbalanced datasets via semantic information extracted from API doc-

umentation. In the two datasets, the TNR is lower when compared with
Precision and Recall. This is caused by that the count of the malware
is far beyond the count of the benign. In addition, the model cannot
characterize benign patterns without enough samples.

4.4. Comparison of GNN algorithms

In this section, we explore the influence of multiple GNN algorithms
on Windows malware detection performance.

We tune hyper-parameters that significantly affect the detection
performance according to domain knowledge to choose the optimal
detection performance. The experiment is conducted on the dataset
MalBehavD-V1 to eliminate the interference of imbalanced samples.
The search range of hyper-parameters and optimal values for three GNN
models are shown in Table V. From Table V, we can observe that the
three GNN algorithms achieve the best performance at 100 epochs with
a batch size of 128 and a learning rate of 0.0001. The number of graph
neural network layers is all in multi-layers when generating the best
performance. The optimal hidden dimensions for the three models are
32 for GCN, 16 for GIN, and 12 for GAT The neural networks’ hidden
dimensions achieve the best performance when GCN is 32, GIN is 16,
and GAT is 12.

We compare the detection performance of DawnGNN by using three
representative GNN algorithms: GCN, GIN, and GAT. The detection per-

formance comparison of three GNN algorithms is shown in Table VI.
From Table VI, we can observe that GAT provides the best detection
performance. The experiment results show that DawnGNN with GIN ex-

hibits superior detection performance over GCN, which illustrates that
the adaptation of the powerful message aggregation function MLP leads
to the improvement of GIN when compared with GCN. The GAT algo-

rithm employs an attention mechanism to adaptive aggregate important
information from neighbor nodes. In addition, the ability to handle di-

rected graphs makes GAT more suitable for API graph scenes. Therefore,
the DawnGNN with GAT achieves the best performance when compared
with GIN and GCN. We also plot the detection performance variation
rule with epochs in Fig. 9 to observe fluctuations in detection per-

formance. From Fig. 9, we can observe that our proposed Windows
malware detection framework achieves good performance on all three
GNN algorithms. This illustrates that the combination of GNN models
and BERT-based enhancing mechanisms is promising in Windows mal-

ware detection.

4.5. Comparison with other approaches

In the following, we compare DawnGNN with existing Windows
malware detection approaches to verify the effectiveness of our pro-

posed detection performance on public datasets.

We examine the performance of the DawnGNN framework against
other existing detection approaches based on API call sequences ex-

tracted from exe files and comparative results are presented in Ta-

ble VII. First, we compare DawnGNN against MalDy [36] and MalDet-

Conv [26] on dataset MalBehavD-V1 and PE_APICALLS. MalDy pro-

posed to leverage h-grams, feature hashing, and Term Frequency–

Inverse Document Frequency (TF-IDF) to vectorize the behavior reports.
Then, an ensemble prediction framework is constructed to perform
precise malware detection. MalDetConv designed a new automated
behavior-based detection framework, which constructs a hybrid of Con-

volutional Neural Network (CNN) and Bidirectional Gated Recurrent
Unit (BiGRU) models to perform high dimensional representations of
API call sequences and then leverages a fully connected neural network
module for malware detection. On dataset MalBehavD-V1, DawnGNN
achieved the detection accuracy of 0.9638, creating an improvement

of 0.79% and 0.51% detection accuracy of MalDy and MalDetConv,

Computers & Security 140 (2024) 103788P. Feng, L. Gai, L. Yang et al.

Table IV

Detection performance comparison with different encoding mechanisms in
dataset PE_APICALLS and APIMDS.

Dataset Encoding Precision Recall TNR Acc F1

PE_APICALLS one-hot 0.9093 0.9808 0.7246 0.9070 0.9283

Word2Vec 0.9214 1.0000 0.7917 0.9286 0.9423

BERT 0.9722 1.0000 0.8929 0.9762 0.9855

APIMDS one-hot 0.9475 1.0000 0.8013 0.9524 0.9714

Word2Vec 0.9861 1.0000 0.8413 0.9878 0.9928

BERT 0.9969 1.0000 0.8714 0.9975 0.9984

Table V

Search range of hyper-parameters and optimal values for three GNN models.

Hyper-parameters GCN GAT GIN Search Range

Learning rate 0.0001 0.0001 0.0001 {0.01, 0.001, 0.0001, 0.00001}

Batch size 128 128 128 {32, 64, 128, 256, 512}

Epochs 100 100 100 {40, 60, 80, 100, 200, 300}

Hidden layers 2 2 2 {2, 3, 4, 5}

Hidden dim 32 12 16 {8, 16, 32, 64, 128} for GCN and GIN

Attention heads - 12 - {6, 8, 10, 12, 14, 16} for GAT

riso
Fig. 9. Detection performance compa

Table VI

The detection performance comparison with three GNN models.

Algorithms Precision Recall TNR Acc F1

GCN 0.9401 0.9666 0.9388 0.9406 0.9524

GIN 0.9506 0.9701 0.9469 0.9509 0.9603

GAT 0.9697 0.9788 0.9556 0.9638 0.9711

respectively. The detection improvement of 2.44% and 1.89% were
achieved by DawnGNN over the MalDy and MalDetConv framework us-

ing dataset PE_APICALLS, respectively. This illustrates the effectiveness
of our BERT-based semantic enhancement and graph learning combi-

nation design in the Windows malware detection domain. On dataset
APIMDS, most methods already achieve the detection accuracy of more
than 99%. Although MalDetConv achieves the highest detection accu-

racy, DawnGNN also performs highly precise malware detection. In this
paper, we design a documentation-augmented mechanism to verify the
effectiveness of the semantic information extracted from the official API
documentation. Experiment results from Table VII illustrate that our
proposed DawnGNN reaches state-of-the-art malware detection perfor-

mance.

5. Discussion & limitation

In this paper, we focus on dynamic API-based malware detection
and leverage API documentation information to enhance the Windows
8

malware detection performance. Although our DawnGNN is useful and
n of three GNN models with epochs.

effective for detecting Windows malware, there is still improvement
in our current implementation when compared with a large number
of existing detection approaches. DawnGNN directly constructs API
graphs from API call sequences to capture the structural dependencies.
This coarse-grained graph construction mechanism can be improved
by DMalNet [17], which builds precise API call graphs using addi-

tional API parameter matching. DawnGNN identifies malware via the
unusual call contexts, which rarely occur among benign programs. For
indistinguishable call contexts, additional run-time behavior informa-

tion like API parameters and network activities [38] can be adopted to
improve detection performance. Malware could leverage concealment-

based evasion method [39], such as environment analysis, delayed exe-

cution, conditional execution, etc., and disguise as benign programs to
evade dynamic analysis. This could be mitigated by X-Force [40], which
leverages the forced execution technique to increase the coverage of dy-

namic analysis. In addition, APT malware leverage Living-Off-The-Land
techniques [41] to conduct nefarious actions, which could be resisted
by provenance graph-based APT detection methods [42]. Our graph
learning-based detection framework is inherently affected by adversar-

ial attacks [43], which could be fought against by more robust learning
methods [44].

Except for API category and parameter information [14–16], the
official API documentation is another unexplored information source.
Therefore, we crawl API documentation from Microsoft’s official web-

site and leverage the BERT model to extract semantic information,

which could be complementary to existing Windows malware detec-

Computers & Security 140 (2024) 103788P. Feng, L. Gai, L. Yang et al.

Table VII

Detection performance comparison with existing approaches.

Dataset Approaches Behavior Feature Feature Vectorization Method ML/DL Algorithm Detection Accuracy

MalBehavD-V1 MalDy [36] Behavior reports

from analysis sandbox

N-grams + Feature
Hashing + TF-IDF

Ensemble learning 0.9559

MalDetConv [26] API call sequences Word2vec Hybrid model
CNN-BiGRU

0.9610

DawnGNN API call sequences

+ API documentation

BERT-based semantic
enhancement

GAT 0.9638

PE_APICALLS MalDy [36] Behavior reports

from analysis sandbox

N-grams + Feature
Hashing + TF-IDF

Ensemble learning 0.9518

MalDetConv [26] API call sequences Word2vec Hybrid model
CNN-BiGRU

0.9573

DawnGNN API call sequences

+ API documentation

BERT-based semantic
enhancement

GAT 0.9762

APIMDS Amer and Zelinka [7] API call sequences Word2Vec + clustering
similarity

Markov chain
model

0.9990

Ki et al. [32] API call sequences DNA sequence
alignment

Similarity
matching

0.9980

Tran and Sato [37] API call sequences TF-IDF SVM 0.9619

MalDetConv [26] API call sequences Word2vec Hybrid model
CNN-BiGRU

0.9993

DawnGNN API call sequences

+ API documentation

BERT-based semantic
enhancement

GAT 0.9975
tion approaches. Mal-Bert-GCN [18] built directed process graphs from
raw API sequences and employed GCN to perform malware detection.
Similarly, our BERT-based semantic enhanced mechanism is orthogonal
to inter-process interaction information. In this paper, we only extract
the functional descriptions for an API call to extract semantic informa-

tion. Other numerous descriptions, including parameters, return value,
remarks, and requirements, are potential useful information sources
for malware detection when considering the boom in large language
models [45]. We leave the design of a more comprehensive detection
framework via deeply digging semantic information from API documen-

tation as future work.

Our documentation-augmented malware detection framework is
based on the classic BERT-based encoding mechanism and standard
GNN algorithm. The encoding mechanism could be improved by the

large version or other optimized models, such as RoBERTa, AL-

BERT [46], DistillBERT [47], etc. The standard GNN algorithm could be
improved by jumping knowledge networks [48], self-supervised learn-

ing mechanisms [49], or other superior graph learning algorithms [50].
We leave the exploration of the optimal encoding mechanisms and
graph learning models as future work for performing highly precision
malware detection. We verify the effectiveness of the proposed seman-

tic enhanced mechanism on three publicly available dynamic malware
datasets. We plan to make stronger experiment validation when obtain-

ing more recent and diverse datasets. The semantic enhanced mecha-

nism could be complementary to enhance current Windows malware
detection methods. We leave the enhancement validation as future re-

search with open source or re-implementation versions of current de-

tection methods. In addition, the combination design of graph neural
network and BERT-based semantic enhanced mechanism can also be
applicable to malware detection in other platforms, like Android and
Linux. The design of bringing in external software operation knowledge
is promising in the malware detection domain.

6. Related work

This section provides a detailed discussion of relevant literature on
dynamic Windows malware detection and BERT-based security detec-

tion methods.

6.1. Dynamic windows malware detection

The dynamic method executes a program in a controlled environ-
9

ment which observes the execution status of the program and then
determines whether it has malicious behaviors by examining API calls,
network traffic, and other critical characteristics. API calls can pro-

vide valuable run-time information for identifying malicious activities.
Therefore, researchers have proposed a lot of API call-based detection
approaches.

Researchers have focused on extracting more effective features from
API call sequences to perform malware detection for a long time. Fang
et al. [51] use a hash function to encode the API call names, return
values, and module names for obtaining more detailed behavior infor-

mation. Agrawal et al. [52] perform one-hot encoding on API call se-

quences and n-gram encoding on API parameters. Unfortunately, these
approaches only consider partial parameters or treat all parameters as
strings, which cannot fully explore the information from various param-

eters. Zhang et al. [10] employ different hashing strategies to encode
API names and various parameters, which still cannot express semantic
information. Rabadi and Teo [53] divide the API parameters into multi-

ple representation sets before applying feature hashing, which may lead
to the loss of distinction.

Many studies have applied ML and DL models to analyze API call se-

quences. Qiao et al. [54] leverage frequent itemset mining and similar-

ity calculation to process the API names and parameters within API call
sequences. Uppal et al. [8] select the important feature via frequency
statistics from API call sequences, and then employ the Support Vec-

tor Machine (SVM) classifier to perform malware detection. The above
methods ignore the relationship between API calls and can be easily
evaded by modifying the frequency counter value. Daht et al. [55] em-

ploy n-grams to process the system API call sequences and then leverage
the logistic regression and shallow neural network classifier to perform
malware classification. Ndibanje et al. [56] construct feature vectors
from API sequences and employ similarity-based statistics methods to
detect malware. Zhang et al. [57] construct API relationship graphs
to represent the internal relationships among various programs. Then,
they leverage the knowledge graph embedding algorithm to input the
API graphs into RF, Model Pool, SVM, and Deep Neural Network (DNN)
to perform malware detection. Pascanu et al. [58] employ Recurrent
Neural Networks (RNNs) to capture sequence relations between APIs
and feed the outputs of RNNs into a max-pooling layer for malware clas-

sification. kolosnjaji et al. [9] leverage CNN to process consecutive API
sequences and apply LSTM to handle time-series dependence. Agrawal
et al. [52] propose to construct several stacked LSTMs to process API
names and string parameters. Zhang et al. [10] design a hybrid deep

learning framework including gate-CNNs and Bi-LSTM to process API

P. Feng, L. Gai, L. Yang et al.

names and parameters for performing malware detection. Researchers
try to transform the API call sequences into graphs to capture the direct
or indirect relationship between API calls. Jiang et al. [59] transform
the API sequences of exe files into a call graph by matching the caller-

callee relationships. Then, graph embedding techniques and stacked
denoising autoencoders are combined to perform malware detection.
Amer and Zelinka [7] leverage contextual similarity in API sequences
to cluster APIs, and employ the Markov chain to capture relationships
and perform malware detection. In this paper, we combine the GNN
model and BERT-based semantic enhancement mechanism to classify
API graphs and perform effective Windows malware detection.

6.2. BERT-based security detection

BERT has emerged as a powerful natural language processing model
that is capable of learning bidirectionally contextual representations.
With great success in various language tasks, the BERT model has been
applied in security detection domains, such as malware detection [60],
vulnerability detection [61], and malicious traffic detection [62], etc.
MalBert [63] and Badr et al. [60] design a BERT-based framework to
perform Android malware detection and classification from elements
extracted from Android Manifest file. SmartConDetect [61] proposes to
extract code fragments via a static analysis tool and then feed them
into a pre-trained BERT model to perform vulnerability detection in
smart contracts. BINSHOT [64] designs a BERT-based similarity learn-

ing architecture to perform effectively binary code similarity detection.
The architecture adopts a weighted distance vector with a binary cross
entropy as a loss function. ET-BERT [62] proposes a new BERT-based
encrypted traffic representation model, which could capture deep con-

textualized datagram-level representation from large-scale unlabeled
data and perform effective malicious traffic detection. Enimanal [65]

proposes a specialized BERT model, which leverages the declarations
within the Linux manual to extract semantic information for each sys-

tem call, and then utilizes GNNs to perform cross-architecture IoT
malware analysis. CoDOC [22] proposes a fusion framework to accu-

rately identify sensitive Android source and sink methods. This frame-

work leverages graph learning to encode source code information and
a BERT-based model to extract semantic information from Android
documentation. Similarly, in this paper, DawnGNN crawls the official
Windows API documentation and leverages a BERT-based semantic ex-

traction mechanism to enhance malware detection.

7. Conclusion

In this paper, we propose a novel dynamic Windows malware de-

tection system using graph neural networks and a BERT-based semantic
enhancement mechanism, called DawnGNN. It constructs API graphs
directly from API call sequences and leverages the BERT-based model
to extract API semantic information from official API documentation.
By feeding the semantic information of API nodes and the directed API
graphs into the GAT, DawnGNN performs effective Windows malware
detection. On three public datasets, we verify that our BERT-based en-

coding mechanism improves the detection mechanism compared with
one-hot and Word2Vec-based encoding mechanisms, and DawnGNN
outperforms other traditional detection methods only using raw API call
sequences. In addition, we find that the official API documentation is
an unexplored informative source and the BERT-based documentation
augmented mechanism is promising in Windows malware detection.

CRediT authorship contribution statement

Pengbin Feng: Methodology, Software, Writing – original draft, In-

vestigation. Le Gai: Software, Visualization, Writing – original draft.

Li Yang: Data curation, Software. Qin Wang: Methodology, Writing
– original draft, Software. Teng Li: Methodology, Writing – review &
editing. Ning Xi: Supervision, Writing – review & editing. Jianfeng
10

Ma: Funding acquisition, Supervision, Writing – review & editing.
Computers & Security 140 (2024) 103788

Declaration of competing interest

The authors declare that there are no conflicts of interest regarding
the publication of this article. All authors have contributed to, read, and
approved this submitted manuscript in its current form.

Data availability

Data will be made available on request.

Acknowledgements

This research was funded by the Major Research plan of the Na-

tional Natural Science Foundation of China (Grant No. 92267204), the
Natural Science Basic Research Program of Shaanxi (Program No. 2023-

JC-QN-0759, 2022JM-338), and the Fundamental Research Funds for
the Central Universities (Project No.: XJSJ23184).

References

[1] SonicWall, Mid-year update to the 2023 sonicwall cyber threat report, https://www .
sonicwall .com /2023 -mid -year -cyber -threat -report/. (Accessed 23 January 2024).

[2] J. Singh, J. Singh, Detection of malicious software by analyzing the behavioral arti-

facts using machine learning algorithms, Inf. Softw. Technol. 121 (2020) 106273.

[3] Z. Sun, Z. Rao, J. Chen, R. Xu, D. He, H. Yang, J. Liu, An opcode sequences analysis
method for unknown malware detection, in: Proceedings of the 2019 2nd Interna-

tional Conference on Geoinformatics and Data Analysis, 2019, pp. 15–19.

[4] D. Yuxin, Z. Siyi, Malware detection based on deep learning algorithm, Neural Com-

put. Appl. 31 (2019) 461–472.

[5] W. Han, J. Xue, Y. Wang, L. Huang, Z. Kong, L. Mao, Maldae: detecting and explain-

ing malware based on correlation and fusion of static and dynamic characteristics,
Comput. Secur. 83 (2019) 208–233.

[6] Z. Salehi, A. Sami, M. Ghiasi, Maar: robust features to detect malicious activity based
on api calls, their arguments and return values, Eng. Appl. Artif. Intell. 59 (2017)
93–102.

[7] E. Amer, I. Zelinka, A dynamic windows malware detection and prediction method
based on contextual understanding of api call sequence, Comput. Secur. 92 (2020)
101760.

[8] D. Uppal, R. Sinha, V. Mehra, V. Jain, Malware detection and classification based
on extraction of api sequences, in: 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), IEEE, 2014, pp. 2337–2342.

[9] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, Deep learning for classification of
malware system call sequences, in: AI 2016: Advances in Artificial Intelligence:
29th Australasian Joint Conference, Hobart, TAS, Australia, December 5-8, 2016,
Proceedings, vol. 29, Springer, 2016, pp. 137–149.

[10] Z. Zhang, P. Qi, W. Wang, Dynamic malware analysis with feature engineering and
feature learning, Proc. AAAI Conf. Artif. Intell. 34 (01) (2020) 1210–1217.

[11] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, T. Liu, Android malware familial
classification and representative sample selection via frequent subgraph analysis,
IEEE Trans. Inf. Forensics Secur. 13 (8) (2018) 1890–1905.

[12] Z. Lin, F. Xiao, Y. Sun, Y. Ma, C.-C. Xing, J. Huang, A secure encryption-based
malware detection system, KSII Trans. Int. Inf. Syst. 12 (4) (2018) 1799–1818.

[13] F.O. Catak, A.F. Yazı, O. Elezaj, J. Ahmed, Deep learning based sequential model for
malware analysis using windows exe api calls, PeerJ Comput. Sci. 6 (2020) e285.

[14] C. Li, Q. Lv, N. Li, Y. Wang, D. Sun, Y. Qiao, A novel deep framework for dynamic
malware detection based on api sequence intrinsic features, Comput. Secur. 116
(2022) 102686.

[15] X. Chen, Z. Hao, L. Li, L. Cui, Y. Zhu, Z. Ding, Y. Liu, Cruparamer: learning on
parameter-augmented api sequences for malware detection, IEEE Trans. Inf. Foren-

sics Secur. 17 (2022) 788–803.

[16] X. Chen, Y. Tong, C. Du, Y. Liu, Z. Ding, Q. Ran, Y. Zhang, L. Cui, Z. Hao, Malpro:
learning on process-aware behaviors for malware detection, in: 2022 IEEE Sympo-

sium on Computers and Communications (ISCC), IEEE, 2022, pp. 01–07.

[17] C. Li, Z. Cheng, H. Zhu, L. Wang, Q. Lv, Y. Wang, N. Li, D. Sun, Dmalnet: dynamic
malware analysis based on api feature engineering and graph learning, Comput.
Secur. 122 (2022) 102872.

[18] Z. Ding, H. Xu, Y. Guo, L. Yan, L. Cui, Z. Hao, Mal-bert-gcn: malware detection
by combining bert and gcn, in: 2022 IEEE International Conference on Trust, Se-

curity and Privacy in Computing and Communications (TrustCom), IEEE, 2022,
pp. 175–183.

[19] H. Gao, S. Cheng, W. Zhang, Gdroid: Android malware detection and classification
with graph convolutional network, Comput. Secur. 106 (2021) 102264.

[20] J.K. Siow, S. Liu, X. Xie, G. Meng, Y. Liu, Learning program semantics with code
representations: an empirical study, in: 2022 IEEE International Conference on Soft-

ware Analysis, Evolution and Reengineering (SANER), IEEE, 2022, pp. 554–565.

[21] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: pre-training of deep bidirectional

transformers for language understanding, arXiv preprint, arXiv :1810 .04805, 2018.

https://www.sonicwall.com/2023-mid-year-cyber-threat-report/
https://www.sonicwall.com/2023-mid-year-cyber-threat-report/
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFDFE60874A98091FDE3137B820954227s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFDFE60874A98091FDE3137B820954227s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE8810765145623C316818ECB644EF7F2s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE8810765145623C316818ECB644EF7F2s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE8810765145623C316818ECB644EF7F2s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD9F858E4EC372B5A601132FBE24627DDs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD9F858E4EC372B5A601132FBE24627DDs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib4751C3F8F4129F865F6665F960B61352s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib4751C3F8F4129F865F6665F960B61352s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib4751C3F8F4129F865F6665F960B61352s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8141DA87AEB671FE4E5CBBE107FD9DEBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8141DA87AEB671FE4E5CBBE107FD9DEBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8141DA87AEB671FE4E5CBBE107FD9DEBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib54E2DD90C36B6D6D4611AF1D4FEBBA62s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib54E2DD90C36B6D6D4611AF1D4FEBBA62s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib54E2DD90C36B6D6D4611AF1D4FEBBA62s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib199F242929C8E0573C4826F455DAEB0Es1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib199F242929C8E0573C4826F455DAEB0Es1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib199F242929C8E0573C4826F455DAEB0Es1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibCCCA1B7FED7F010C196F1F5B19A6DCF5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibCCCA1B7FED7F010C196F1F5B19A6DCF5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibCCCA1B7FED7F010C196F1F5B19A6DCF5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibCCCA1B7FED7F010C196F1F5B19A6DCF5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib832CC95B43C031F234C967746D457ADBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib832CC95B43C031F234C967746D457ADBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib83480421E712851F7080DD224BF64F92s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib83480421E712851F7080DD224BF64F92s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib83480421E712851F7080DD224BF64F92s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0BB0EA54C077EAC7D02CA23419EC013Ds1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0BB0EA54C077EAC7D02CA23419EC013Ds1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE66ADA101257A127DEA66A87B41CA1A5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE66ADA101257A127DEA66A87B41CA1A5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3E28D178751FFFB34B8FC20BCC7ACF99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3E28D178751FFFB34B8FC20BCC7ACF99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3E28D178751FFFB34B8FC20BCC7ACF99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8AA687B4E1D1ED572F1983611CF3F547s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8AA687B4E1D1ED572F1983611CF3F547s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8AA687B4E1D1ED572F1983611CF3F547s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB238C24E19E9C770779861335F6132B8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB238C24E19E9C770779861335F6132B8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB238C24E19E9C770779861335F6132B8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibA6A0851706A1276EBFFD112D6F96B704s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibA6A0851706A1276EBFFD112D6F96B704s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibA6A0851706A1276EBFFD112D6F96B704s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFE3AC45C5BC54DBB9B941730614171E5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFE3AC45C5BC54DBB9B941730614171E5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFE3AC45C5BC54DBB9B941730614171E5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFE3AC45C5BC54DBB9B941730614171E5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE4B0794AC3D5AE16103389D2B3879318s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibE4B0794AC3D5AE16103389D2B3879318s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib96C1D25EAD5F0E5984AB33F777BCD917s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib96C1D25EAD5F0E5984AB33F777BCD917s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib96C1D25EAD5F0E5984AB33F777BCD917s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3AAF9F78273D48FFB87EBB486F1D1D9Ds1

Computers & Security 140 (2024) 103788P. Feng, L. Gai, L. Yang et al.

[22] J. Samhi, M. Kober, A.K. Kabore, S. Arzt, T.F. Bissyandé, J. Klein, Negative results of
fusing code and documentation for learning to accurately identify sensitive source
and sink methods: an application to the Android framework for data leak detec-

tion, in: 2023 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, 2023, pp. 783–794.

[23] statcounter GlobalStats, Desktop operating system market share worldwide, https://

gs .statcounter .com /os -market -share /desktop /worldwide. (Accessed 1 September
2023).

[24] G.H. Andreas Marx, Oliver Marx, Total amount of malware and pua, https://portal .
av -atlas .org /malware. (Accessed 1 August 2023).

[25] D. Uppal, R. Sinha, V. Mehra, V. Jain, Exploring behavioral aspects of api
calls for malware identification and categorization, in: 2014 International Con-

ference on Computational Intelligence and Communication Networks, IEEE, 2014,
pp. 824–828.

[26] P. Maniriho, A.N. Mahmood, M.J.M. Chowdhury, Api-maldetect: automated mal-

ware detection framework for windows based on api calls and deep learning tech-

niques, J. Netw. Comput. Appl. (2023) 103704.

[27] C. Guarnieri, Automated malware analysis, https://cuckoosandbox .org/. (Ac-

cessed 27 August 2021).

[28] F.O. Catak, Windows malware dataset with pe api calls, https://github .com /ocatak /
malware _api _class. (Accessed 27 August 2021).

[29] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph atten-

tion networks, arXiv preprint arXiv :1710 .10903, 2017.

[30] H. Cai, V.W. Zheng, K.C.-C. Chang, A comprehensive survey of graph embedding:
problems, techniques, and applications, IEEE Trans. Knowl. Data Eng. 30 (9) (2018)
1616–1637.

[31] N. Allan, J. Ngubiri, Windows pe api calls for malicious and benigin programs,
09.2019.

[32] Y. Ki, E. Kim, H.K. Kim, A novel approach to detect malware based on api call
sequence analysis, Int. J. Distrib. Sens. Netw. 11 (6) (2015) 659101.

[33] Z. Liu, W. Lin, Y. Shi, J. Zhao, A robustly optimized bert pre-training approach with
post-training, in: China National Conference on Chinese Computational Linguistics,
Springer, 2021, pp. 471–484.

[34] N. Reimers, I. Gurevych, Sentence-bert: sentence embeddings using Siamese bert-

networks, arXiv preprint arXiv :1908 .10084, 2019.

[35] M. Ring, D. Schlör, S. Wunderlich, D. Landes, A. Hotho, Malware detection on win-

dows audit logs using lstms, Comput. Secur. 109 (2021) 102389.

[36] E.B. Karbab, M. Debbabi, Maldy: portable, data-driven malware detection using nat-

ural language processing and machine learning techniques on behavioral analysis
reports, Digit. Investig. 28 (2019) S77–S87.

[37] T.K. Tran, H. Sato, Nlp-based approaches for malware classification from api se-

quences, in: 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary
Systems (IES), IEEE, 2017, pp. 101–105.

[38] A. Brown, M. Gupta, M. Abdelsalam, Automated machine learning for deep learning
based malware detection, arXiv preprint arXiv :2303 .01679, 2023.

[39] J. Geng, J. Wang, Z. Fang, Y. Zhou, D. Wu, W. Ge, A survey of strategy-driven
evasion methods for pe malware: transformation, concealment, and attack, Comput.
Secur. (2023) 103595.

[40] W. You, Z. Zhang, Y. Kwon, Y. Aafer, F. Peng, Y. Shi, C. Harmon, X. Zhang, Pmp:
cost-effective forced execution with probabilistic memory pre-planning, in: 2020
IEEE Symposium on Security and Privacy (SP), IEEE, 2020, pp. 1121–1138.

[41] F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor, I. Martinovic, Survival-

ism: systematic analysis of windows malware living-off-the-land, in: 2021 IEEE
Symposium on Security and Privacy (SP), IEEE, 2021, pp. 1557–1574.

[42] M.A. Talib, Q. Nasir, A.B. Nassif, T. Mokhamed, N. Ahmed, B. Mahfood, Apt bea-

coning detection: a systematic review, Comput. Secur. (2022) 102875.

[43] K. Aryal, M. Gupta, M. Abdelsalam, A survey on adversarial attacks for malware
analysis, arXiv preprint arXiv :2111 .08223, 2021.

[44] J. Li, X. Fu, S. Zhu, H. Peng, S. Wang, Q. Sun, S.Y. Philip, L. He, A robust and
generalized framework for adversarial graph embedding, IEEE Trans. Knowl. Data
Eng. (2023).

[45] M. Gupta, C. Akiri, K. Aryal, E. Parker, L. Praharaj, From chatgpt to threatgpt: im-

pact of generative ai in cybersecurity and privacy, IEEE Access (2023).

[46] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, Albert: a lite bert
for self-supervised learning of language representations, arXiv preprint arXiv :1909 .
11942, 2019.

[47] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter, arXiv preprint arXiv :1910 .01108, 2019.

[48] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, S. Jegelka, Representation
learning on graphs with jumping knowledge networks, in: International Conference
on Machine Learning, in: PMLR, 2018, pp. 5453–5462.

[49] Y. Liu, M. Jin, S. Pan, C. Zhou, Y. Zheng, F. Xia, S.Y. Philip, Graph self-supervised
learning: a survey, IEEE Trans. Knowl. Data Eng. 35 (6) (2022) 5879–5900.

[50] G. Dong, M. Tang, Z. Wang, J. Gao, S. Guo, L. Cai, R. Gutierrez, B. Campbel, L.E.
Barnes, M. Boukhechba, Graph neural networks in iot: a survey, ACM Trans. Sens.
Netw. 19 (2) (2023) 1–50.

[51] Y. Fang, B. Yu, Y. Tang, L. Liu, Z. Lu, Y. Wang, Q. Yang, A new malware classifi-

cation approach based on malware dynamic analysis, in: Information Security and
Privacy: 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand, July

[52] R. Agrawal, J.W. Stokes, M. Marinescu, K. Selvaraj, Neural sequential malware
detection with parameters, in: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2018, pp. 2656–2660.

[53] D. Rabadi, S.G. Teo, Advanced windows methods on malware detection and classi-

fication, in: Annual Computer Security Applications Conference, 2020, pp. 54–68.

[54] Y. Qiao, Y. Yang, L. Ji, J. He, Analyzing malware by abstracting the frequent itemsets
in api call sequences, in: 2013 12th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, IEEE, 2013, pp. 265–270.

[55] G.E. Dahl, J.W. Stokes, L. Deng, D. Yu, Large-scale malware classification using
random projections and neural networks, in: 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, IEEE, 2013, pp. 3422–3426.

[56] B. Ndibanje, K.H. Kim, Y.J. Kang, H.H. Kim, T.Y. Kim, H.J. Lee, Cross-method-based
analysis and classification of malicious behavior by api calls extraction, Appl. Sci.
9 (2) (2019) 239.

[57] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang, M. Yang,
Enhancing state-of-the-art classifiers with api semantics to detect evolved Android
malware, in: Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 757–770.

[58] R. Pascanu, J.W. Stokes, H. Sanossian, M. Marinescu, A. Thomas, Malware classifica-

tion with recurrent networks, in: 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, 2015, pp. 1916–1920.

[59] H. Jiang, T. Turki, J.T. Wang, Dlgraph: malware detection using deep learning and
graph embedding, in: 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), IEEE, 2018, pp. 1029–1033.

[60] B. Souani, A. Khanfir, A. Bartel, K. Allix, Y. Le Traon, Android malware detection
using bert, in: International Conference on Applied Cryptography and Network Se-

curity, Springer, 2022, pp. 575–591.

[61] S. Jeon, G. Lee, H. Kim, S.S. Woo, Smartcondetect: highly accurate smart contract
code vulnerability detection mechanism using bert, in: KDD Workshop on Program-

ming Language Processing, 2021.

[62] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, J. Yu, Et-bert: a contextualized datagram
representation with pre-training transformers for encrypted traffic classification, in:
Proceedings of the ACM Web Conference 2022, 2022, pp. 633–642.

[63] A. Rahali, M.A. Akhloufi, Malbert: malware detection using bidirectional encoder
representations from transformers, in: 2021 IEEE International Conference on Sys-

tems, Man, and Cybernetics (SMC), IEEE, 2021, pp. 3226–3231.

[64] S. Ahn, S. Ahn, H. Koo, Y. Paek, Practical binary code similarity detection with bert-

based transferable similarity learning, in: Proceedings of the 38th Annual Computer
Security Applications Conference, 2022, pp. 361–374.

[65] L. Deng, H. Wen, M. Xin, H. Li, Z. Pan, L. Sun, Enimanal: augmented cross-

architecture iot malware analysis using graph neural networks, Comput. Secur.
(2023) 103323.

Pengbin Feng received the Ph.D. degrees in computer science from Xidian Univer-

sity, Xi’an, Shaanxi, China in 2019. He is currently a lecturer in the School of Cyber
Engineering, Xidian University. His research interests include malware detection and bi-

nary analysis.

Le Gai is currently a BSc student with the School of Computer Science and Tech-

nology at Xidian University, China. His current research interests include learning-based
security detection and privacy protection.

Li Yang received the Ph.D. degrees in computer science from Xidian University, Xi’an,
Shaanxi, China in 2010. He is currently a Professor with the School of Computer Science
& Technology, Xidian University. His current research interests include wireless network
and system security.

Qin Wang received Ph.D. degree from the University of New South Wales in 2022.
He is now an assistant researcher in the University of New South Wales. His research
interests include privacy protection and blockchain.

Teng Li received the Ph.D. degrees in computer science from Xidian University, Xi’an,
Shaanxi, China in 2018. He is currently an Associate Professor in the School of Cyber En-

gineering, Xidian University. His current research interests include wireless and networks,
distributed systems and intelligent terminals with focus on security and privacy issues.

Ning Xi received the Ph.D. degrees in computer science from Xidian University, Xi’an,
Shaanxi, China in 2014. He is currently a Professor with the School of Cyber Engineering,
Xidian University. His research interests include home network, service computing, and
network security.

Jianfeng Ma received the Ph.D. degree in computer software and telecommunication
engineering from Xidian University, Xi’an, China, in 1995. He is currently a Professor and
a Ph.D. Supervisor with the Department of Computer Science and Technology, Xidian
University. He is also the Director of the Shaanxi Key Laboratory of Network and System
Security. His current research interests include information and network security, wireless
and mobile computing systems, and computer networks.
11

3–5, 2017, Proceedings, Part II, vol. 22, Springer, Auckland, New Zealand, 2017,
pp. 173–189.

http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0F3FEBC4C6653EBCFFF95A0FAACC19D6s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0F3FEBC4C6653EBCFFF95A0FAACC19D6s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0F3FEBC4C6653EBCFFF95A0FAACC19D6s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0F3FEBC4C6653EBCFFF95A0FAACC19D6s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0F3FEBC4C6653EBCFFF95A0FAACC19D6s1
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://gs.statcounter.com/os-market-share/desktop/worldwide
https://portal.av-atlas.org/malware
https://portal.av-atlas.org/malware
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA27F548545B13B51C499747818D7520s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA27F548545B13B51C499747818D7520s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA27F548545B13B51C499747818D7520s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA27F548545B13B51C499747818D7520s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFD4587CEAA837FD49864B55188D83940s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFD4587CEAA837FD49864B55188D83940s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFD4587CEAA837FD49864B55188D83940s1
https://cuckoosandbox.org/
https://github.com/ocatak/malware_api_class
https://github.com/ocatak/malware_api_class
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibDBC261EDEDA011C8DF0DFA015E34BF6Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibDBC261EDEDA011C8DF0DFA015E34BF6Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEBB189A1C2FB29D8553A3ABC648A77A3s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEBB189A1C2FB29D8553A3ABC648A77A3s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEBB189A1C2FB29D8553A3ABC648A77A3s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3C4D09E4EF50B370AE0EFACDB43EC2DDs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib3C4D09E4EF50B370AE0EFACDB43EC2DDs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib67CE6F88D8DDE69E2509F3CAF1631FF7s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib67CE6F88D8DDE69E2509F3CAF1631FF7s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib82F9A6981824800A345FB30B83F9C876s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib82F9A6981824800A345FB30B83F9C876s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib82F9A6981824800A345FB30B83F9C876s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibA809AEB567B23AF148DEC0EEF0B6404Es1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibA809AEB567B23AF148DEC0EEF0B6404Es1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib31A2A11CF082BCED06DAAB02E09D8FF3s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib31A2A11CF082BCED06DAAB02E09D8FF3s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8ADDB21A60092496F36C2FD3A3DE91E4s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8ADDB21A60092496F36C2FD3A3DE91E4s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib8ADDB21A60092496F36C2FD3A3DE91E4s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib897842313495A0CABDB1B79EAC7EC102s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib897842313495A0CABDB1B79EAC7EC102s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib897842313495A0CABDB1B79EAC7EC102s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB62782DAD427BA3328C2909B0BBBFC97s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB62782DAD427BA3328C2909B0BBBFC97s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib94A1C08C6159D72200450A139A277F1As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib94A1C08C6159D72200450A139A277F1As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib94A1C08C6159D72200450A139A277F1As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA878D002E05376418210F4143C3939Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA878D002E05376418210F4143C3939Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibBA878D002E05376418210F4143C3939Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibC6F055A0753E4D87B54D56600757F22As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibC6F055A0753E4D87B54D56600757F22As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibC6F055A0753E4D87B54D56600757F22As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib27C082C5C6AB9F66340FC94C73F57601s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib27C082C5C6AB9F66340FC94C73F57601s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB631D83ABC24110DA181A0408098A948s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB631D83ABC24110DA181A0408098A948s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib9FE8392E4088310CF58A8A89AF611D0Cs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib9FE8392E4088310CF58A8A89AF611D0Cs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib9FE8392E4088310CF58A8A89AF611D0Cs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD344A6988009AEF7BBF27B62662FADEEs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD344A6988009AEF7BBF27B62662FADEEs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibC9964260B8C21EE93C00AED4BE9EAAF9s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibC9964260B8C21EE93C00AED4BE9EAAF9s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibC9964260B8C21EE93C00AED4BE9EAAF9s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFCC12D86215EEC4A7AC27572C1F724C9s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibFCC12D86215EEC4A7AC27572C1F724C9s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib046507C07A99D5A20A11E405BEE652D8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib046507C07A99D5A20A11E405BEE652D8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib046507C07A99D5A20A11E405BEE652D8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib829BC3E98C5D290B4AE1BABF70BC0CBBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib829BC3E98C5D290B4AE1BABF70BC0CBBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEB61F2BEDBF903731C26B6153938ED9Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEB61F2BEDBF903731C26B6153938ED9Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEB61F2BEDBF903731C26B6153938ED9Bs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0A1DF9E8D9F7F28D7AB0BB0105440C99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0A1DF9E8D9F7F28D7AB0BB0105440C99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0A1DF9E8D9F7F28D7AB0BB0105440C99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0A1DF9E8D9F7F28D7AB0BB0105440C99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0A1DF9E8D9F7F28D7AB0BB0105440C99s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibF5AD49E2015F120A7728755645578439s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibF5AD49E2015F120A7728755645578439s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibF5AD49E2015F120A7728755645578439s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib430F551162EF641C0F95172C220817F5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib430F551162EF641C0F95172C220817F5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib1472C8AE05B8FCE604F41CAB35094411s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib1472C8AE05B8FCE604F41CAB35094411s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib1472C8AE05B8FCE604F41CAB35094411s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib94A9EB9EFA178E8B0C9DA416B3E133E8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib94A9EB9EFA178E8B0C9DA416B3E133E8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib94A9EB9EFA178E8B0C9DA416B3E133E8s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib1D4AA950C05C264BAE708A6C0D927DC2s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib1D4AA950C05C264BAE708A6C0D927DC2s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib1D4AA950C05C264BAE708A6C0D927DC2s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB5EB26601E086241CFBE1626C9FC63D5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB5EB26601E086241CFBE1626C9FC63D5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB5EB26601E086241CFBE1626C9FC63D5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibB5EB26601E086241CFBE1626C9FC63D5s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD42CC41A76476B25E69E3114DABEDB31s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD42CC41A76476B25E69E3114DABEDB31s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibD42CC41A76476B25E69E3114DABEDB31s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib399B810716BF07A1A9A112C0D9419097s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib399B810716BF07A1A9A112C0D9419097s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib399B810716BF07A1A9A112C0D9419097s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0C59514C76D34D75527F623B3DEFA6EBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0C59514C76D34D75527F623B3DEFA6EBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib0C59514C76D34D75527F623B3DEFA6EBs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEE1273F8D0E1EFA419A16D1346B061D7s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEE1273F8D0E1EFA419A16D1346B061D7s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibEE1273F8D0E1EFA419A16D1346B061D7s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib797F0F50E7F5105D719659FABA1AF52As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib797F0F50E7F5105D719659FABA1AF52As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib797F0F50E7F5105D719659FABA1AF52As1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib4CB63C2A787CE577E14B6D653E52FB42s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib4CB63C2A787CE577E14B6D653E52FB42s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib4CB63C2A787CE577E14B6D653E52FB42s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib89CD7B0549B58B54014A72C35E476B4Fs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib89CD7B0549B58B54014A72C35E476B4Fs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bib89CD7B0549B58B54014A72C35E476B4Fs1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibDA9E9B6286EAE7B0BA9C0CD239CB02C4s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibDA9E9B6286EAE7B0BA9C0CD239CB02C4s1
http://refhub.elsevier.com/S0167-4048(24)00089-0/bibDA9E9B6286EAE7B0BA9C0CD239CB02C4s1

	DawnGNN: Documentation augmented windows malware detection using graph neural network
	1 Introduction
	2 Background
	2.1 The threats of windows malware
	2.2 Windows API with official documentation

	3 System design
	3.1 API graph constructor
	3.2 API2Vec embedding layer
	3.3 GNN classifier

	4 Experiments and evaluation
	4.1 Experimental setup and dataset
	4.2 Measure metrics
	4.3 Performance of malware detection
	4.4 Comparison of GNN algorithms
	4.5 Comparison with other approaches

	5 Discussion & limitation
	6 Related work
	6.1 Dynamic windows malware detection
	6.2 BERT-based security detection

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

