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Application Program Interface (API) calls are widely used in dynamic Windows malware analysis to characterize 
the run-time behavior of malware. Researchers have proposed various approaches to mine semantic information 
from API calls to improve the performance of malware analysis. However, with increasingly sophisticated 
malware, the exploration of new semantic dimensions for API calls is never-ending. In this paper, we find that 
the official Windows API documentation is an unexplored information source in malware detection. Therefore, 
we propose a novel documentation-augmented Windows malware detection framework DawnGNN using the 
pre-trained semantic enhanced mechanism and graph neural network. First, it converts the API sequences into 
API graphs for further contextual information extraction. Next, we crawl API documentation from the official 
website and employ the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model to 
encode functionality descriptions as API embeddings. Finally, it feeds the API graphs with API node attributes 
into the Graph Attention Network (GAT) classifier to perform Windows malware detection. Moreover, we verify 
the effectiveness of DawnGNN on three public datasets. Experimental results demonstrate the effectiveness of 
DawnGNN. Semantic information from the official API documentation is promising in the Windows malware 
detection domain.
1. Introduction

Over the past decades, malware has been expanding rapidly in per-

sonal computers and networks. According to a recent report [1], a total 
of 172,146 never-before-seen malware variants were identified in the 
first six months of 2023 by SonicWall, more than in any other year 
and an average of 956 per day. Malware would steal private data, 
perform unauthorized access, and cause system corruption, posing a 
serious threat to users. Therefore, it is necessary to devise an effective 
automatic detection method for preventing the spread of malware, es-

pecially the newly emerging variants.

Malware detection approaches can be mainly divided into static and 
dynamic analysis. Static analysis methods directly extract specific fea-

tures [2–4], such as header information, opcode sequences, and static 
Application Program Interface (API) calls from executable files, but 
packer, code obfuscation, and metamorphism techniques could make 
the static analysis less effective [5]. On the contrary, dynamic anal-

ysis extracts behavior information (including network traffic, registry 
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operations, system calls, etc.) while running programs in an isolated 
environment [6]. Compared with static analysis, the observation of ex-

ecuted behavior makes dynamic analysis effective against various code 
obfuscation techniques [7].

The Windows API calls are widely used in dynamic malware de-

tection [8–10]. A Windows program usually calls many system APIs 
during runtime, which characterizes all program behaviors including 
file operation, network access, registry modification, etc. These APIs 
constitute API sequences that usually contain distinguishable contextual 
patterns for malware detection [7]. Thus, researchers have proposed 
many machine learning or deep learning-based approaches that capture 
the meaningful relationship information among API calls to perform 
malware detection [11–13]. Unfortunately, most of these studies often 
only consider the API name or frequency of API usage but ignore se-

mantic information about the API calls, which cannot fully express the 
meaning of the API call sequences.

Ce et al. [14] point out that the feature mining of API sequence is 
not sufficient, which would cause some malware to evade detection. 
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Therefore, researchers have proposed to capture various information, 
such as API semantic categories [14], API parameters [15], process 
graphs [16], etc., for improving malware detection performance. Ce et 
al. [14] propose to extract semantic information including category, ac-

tion, operation object, etc., from the API calls and construct semantic 
chains from API sequences to improve malware detection performance. 
DMalNet [17] proposes to combine semantic information from differ-

ent types of parameters and graph learning to improve the performance 
of malware analysis. CruParamer [15] conducts fine-grained analysis 
on API parameters and employs rule-based and clustering-based pa-

rameter classification to construct parameter-augmented API sequences 
for further mining semantic information from parameters. MalPro [16]

proposes a logistic regression-based parameter weighting mechanism to 
improve the semantics of API parameters and constructs process graphs 
from behavior logs to enhance malware detection. Mal-Bert-GCN [18]

similarly leverages the BERT model to encode API sequences as node 
embeddings for directed process graphs.

When considering increasingly sophisticated malware, the explo-

ration of new semantic dimensions and detection frameworks is never-

ending.

Insufficient Feature Mining. Except for considering API name and fre-

quency of API usage, researchers have proposed to leverage additional 
information such as semantics within API name, pre-defined seman-

tic categories, parameter value-induced sensitivity level, cross-process 
interaction relationship, etc., for enhancing the current malware detec-

tion method. However, experts-defined sensitive semantics need regular 
updates, which is labor intensive. Multi-stage feature processing on ex-

isting detection features increases the burden at the inference stage. 
Meanwhile, the exploration of new semantic features continues to be 
necessary for the arms race between attack and defense. Inspired by the 
software development process, we find that the official API documen-

tation is a new semantic dimension, that could better characterize API 
semantics and supplement existing detection features.

New Detection Framework. Graph neural network (GNN) has been 
proven to be effective in capturing critical information from program 
representation graphs [19] within cybersecurity tasks. In addition, ap-

plying GNN algorithms directly on graph structures is superior to 
sequence-based and tree-based approaches in the vulnerability detec-

tion domain [20]. The pre-trained Bidirectional Encoder Representa-

tions from Transformers (BERT) [21] model is widely used to encode 
semantic information from natural languages, which could automati-

cally infer critical information from API documentation. The combi-

nation of intrinsic message-passing mechanisms within GNN algorithms 
and BERT-derived critical information could help to identify potentially 
risky behaviors.

In this paper, we focus on API-based dynamic malware analysis and 
try to explore additional semantic information from API sequences to 
fight against increasingly sophisticated Windows malware. Inspired by 
the success of Android API documentation in the identification of source 
and sink methods [22], we found that the official Windows API docu-

mentation is an unexplored information source in malware detection. 
With the proven effectiveness in various Natural Language Process-

ing (NLP) tasks, the pre-trained BERT model could be leveraged to 
capture semantic information from the natural language described in 
API documentation. Consequently, we propose a novel Windows mal-

ware detection framework, documentation augmented Windows mal-

ware detection using graph neural network, named DawnGNN. First, 
it converts the API call sequences to API graphs for further extract-

ing the contextual information. Second, we designed a semi-automatic 
method to crawl API documentation from the Microsoft official website. 
Next, the collected API documentation is inputted into the pre-trained 
BERT model for encoding newly discovered semantic information as 
API node embeddings. Finally, the Graph Attention Network (GAT) 
classifier takes the API graphs with node semantic attributes as in-

put to perform Windows malware detection. On three public Windows 
2

malware benchmarks, we verify the effectiveness of our BERT-based en-
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Fig. 1. Desktop operating system market share worldwide from StatCounter.

coding mechanism in improving the performance of malware detection. 
Experimental results also show that our proposed framework outper-

forms the existing detection methods only using raw API call sequences. 
In addition, we verify that the official API documentation is an effec-

tive information source in Windows malware detection, which could be 
complementary to current malware analysis methods. Our combination 
framework of graph learning and BERT-based encoding mechanism is 
promising in Windows malware detection.

In summary, we make the following contributions:

• We find that the official API documentation is an unexplored and 
effective information source for Windows malware detection and 
design a documentation-augmented approach.

• We propose a novel dynamic Windows malware detection frame-

work, namely DawnGNN, that utilizes the BERT-based semantic 
enhanced mechanism and graph neural network to perform mal-

ware detection.

• We adopt multiple API embedding techniques and GNN algorithms 
to verify the effectiveness and explore the best performance of the 
proposed detection framework.

• We evaluate our approach on three public Windows malware 
benchmarks. Experimental results verify the effectiveness of our 
BERT-based semantic enhanced mechanism and design framework.

The rest of the paper is organized as follows. Section 2 presents 
the background about Windows malware and API. Section 3 detailed 
describes the system design of DawnGNN. Section 4 discusses the ex-

perimental results. Section 6 summarizes the related works. Section 5

presents the limitation of DawnGNN. The conclusion of this work is 
provided in Section 7.

2. Background

In this section, we discuss the threats of Windows malware and in-

troduce the API with official documentation.

2.1. The threats of windows malware

According to the StatCounter website statistical data, Windows, de-

veloped by Microsoft, stands as the most widely used and widely dis-

tributed desktop operating system [23]. The market share distribution 
for the desktop operating systems is shown in Fig. 1. Consequently, the 
popularity and widespread usage of the Windows operating system (OS) 
make it an attractive target for cybercriminals. Malware targeting the 
Windows platform has increased enormously in recent years. According 
to AV-TEST statistics [24], until September 2023, the count of Windows 

malware samples has reached 1.07 billion.



P. Feng, L. Gai, L. Yang et al.

Fig. 2. Official API documentation for Windows API Process32NextW. Text in-

formation in red box denote API functionality description.

Windows malware mainly includes the following categories: Virus.

A computer virus usually hides within another seemingly harmless pro-

gram and generates copies and inserts them into other programs. Worm.

A worm usually performs as stand-alone malware and actively prop-

agates itself via networks to infect other files or computers. Rootkits.

Rootkits can remain hidden by altering the system settings of targeting 
OS and making the harmful processes invisible to normal users. Back-

door. A backdoor allows attackers to gain unauthorized remote access to 
a victim’s computer to bypass its protection mechanisms. Trojan horse. A 
Trojan horse usually camouflages as a regular, benign program or util-

ity to mislead victims and activates hidden destructive functions when 
the application starts. Ransomware. Ransomware mainly focuses on de-

manding a ransom from the victims by encrypting key files or locking 
the whole system to prevent access.

2.2. Windows API with official documentation

The Windows API is an important part of the Windows OS and plays 
a key role in connecting Windows-based programs with Windows ker-

nel and hardware [25]. The collection of all API functions is known 
as Win32 API. Apart from some console programs, all Windows pro-

grams can interact with Windows API and access predefined tasks such 
as opening and closing a file, displaying a prompt dialog box, storing 
computation results to files, and accelerating task processing via start-

ing multiple threads. The system resources like file systems, processes, 
threads, network communication, and devices, are unified and managed 
by the OS kernel, and programs need to employ Windows API to accom-

plish their tasks. All available API functions are provided via dynamic 
link libraries, i.e., in .dll files, and commonly used libraries include Ker-

nel32.dll, User32.dll, and GDI32.dll. The extraction and analysis of API 
calls are useful in determining the behavior and functions of a program.

We find that the official API documentation contains the seman-

tic description for API functionality and carries more information than 
the API name, which can be used to enhance current API call-based 
Windows malware detection methods. The API Process32NextW is one 
representative potentially malicious API call [26]. Its partial official 
documentation is shown in Fig. 2. From Fig. 2, the sentence “Re-

trieves information...” in the red box can accurately describe the API 
functionality, which can also be used for semantic representation in 
Windows malware detection. In this paper, we design a documentation-

augmented Windows malware detection framework to verify the effec-

tiveness of API documentation. In addition, we leave the inclusion of 
semantic information for other auxiliary descriptions within the docu-

mentation page like parameters, and return values in malware detection 
as future work.

3. System design

The goal of DawnGNN is to leverage the official API documentation 
3

information for enhancing dynamic Windows malware detection using 
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graph neural network and the BERT model. Fig. 3 shows the overall ar-

chitecture of DawnGNN, which consists of three components, namely, 
API Graph Constructor, API2Vec Embedding Layer and GNN Classifier. 
Firstly, the API graph constructor leverages Cuckoo Sandbox [27] to 
perform automatic dynamic analysis on Windows Portable Executable 
(PE) programs to extract API call sequences. API calls, indicating the 
interactions between programs and system resource usage, are widely 
used to make unified behavior representations for malware detection. 
Then, it adopts structural dependencies within API sequences to build 
API graphs. Next, the API2Vec embedding layer generates API attributes 
by encoding official API documentation via the BERT-based language 
model. Finally, GNN is adopted to learn contextual information from 
attributed API graphs for performing effective malware detection.

3.1. API graph constructor

After obtaining the run-time API call sequences from Windows PE 
programs, this component converts the call sequences into graphs to 
capture the structural dependencies between APIs. Formally, given a set 
of API sequences, each program is represented as a graph 𝐺 = {𝑉 , 𝐷}, 
where 𝑉 is a set of nodes and 𝑣 ∈ 𝑉 denotes a unique API call, and 
𝐷 ⊆ 𝑉 × 𝑉 represents a set of directed edges, where an edge ⃖⃖⃖⃖⃖⃖⃗𝑣𝑖𝑣𝑗 indi-

cate a sequential connection between API calls. The attribute matrix is 
defined as 𝑋 = {⋯ ; 𝑥𝑖; ⋯ ; }, where 𝑥𝑖 is the attribute of 𝑖-th node. The 
adjacency matrix of graph 𝐺 is represented as 𝐴 ∈ℤ𝑁𝐺×𝑁𝐺 , where 𝑁𝐺

is the count of all API nodes. Thus, the API call graph maintains all API 
calls with their sequence information.

To construct the graph, we first collect API calls from all Windows 
programs as an API sequence set. Then, we construct the API graph by 
treating the sequence orders as call relationships, which could be im-

proved by precisely API parameter matching. To further illustrate the 
process, Fig. 4 shows a segment of the collected API sequence from a 
sample of Trojan malware [28], which is often disguised as legitimate 
software and performs unauthorized behaviors. The API sequence con-

tains six API calls: ‘ntcreatefile’, ‘ldrgetprocedureaddress’, 
‘setfileattributesw’, ‘getfileattributesw’, ‘mesagebox-

timeouta’ and ‘ntterminateprocess’. In the API sequence, the API 
call ‘ntcreatefile’ is followed by ‘mesageboxtimeouta’, which 
means a directed edge is created from the ‘ntcreatefile’ node to 
‘mesageboxtimeouta’ node.

3.2. API2Vec embedding layer

In this paper, we generate API embeddings via learning semantic 
information from crawled official Windows API documentation. In ad-

dition, attributes like the parameters of the API function, the location 
of the API within its sequence, and code semantic characteristics within 
the API implementation, can be easily added to the node attribute to 
further improve malware classification performance. The pre-trained 
BERT model [21] has been proven to be effective in various NLP tasks, 
which is suitable for processing API documentation. Firstly, we design 
a semi-automatic method to crawl API documentation from the offi-

cial website1 via analyzing the website page layout structure. These 
documents briefly summarize the functionality of every API in nature 
language, which represents an effective information source for semantic 
information extraction. Then, the BERT model has the ability to gener-

ate API embeddings directly from these language descriptions.

After manually analyzing the official API website, we found that 
most websites share similar layout structures. Thus, we developed 
XML Path Language (XPath) parser scripts to extract all API names 
with corresponding description documentation. To counter the complex 
anti-crawl mechanism of the Microsoft website, we manually save the 
website page covering all API categories. Next, we parse the category 
1 https://learn .microsoft .com /en -us /windows /win32 /api.

https://learn.microsoft.com/en-us/windows/win32/api


Computers & Security 140 (2024) 103788P. Feng, L. Gai, L. Yang et al.

Fig. 3. The architecture of DawnGNN system.
Fig. 4. The workflow of API graph constructor.

Fig. 5. Total number of words for Windows API documentation.

website to collect every API category Uniform Resource Locator (URL). 
Then, the API category URL is iteratively parsed to collect header file 
URLs for API documentation extraction. Finally, we obtain the most API 
documentation without sparse distribution cases, like Windows driver 
API or out-of-date API. For the remaining API, we manually search on-

line to collect the description. Finally, we crawled 32763 Windows APIs 
with corresponding description documentation. We plot the distribu-

tion of the number of words for Windows API documentation in Fig. 5, 
which exhibits great diversity and contains sufficient information. We 
also plot the word cloud of Windows API documentation in Fig. 6, which 
covers the main functionality provided by Windows OS.

After building the API documentation corpus, we leverage the pre-

trained BERT model to capture the features and encode the semantic 
representation of each Windows API. In order to learn the context re-

lationships between different words within the API documentation, we 
perform the masked language model (MLM) task. We present the de-

tailed process of the MLM task for API documentation in Fig. 7. The 
4

[CLS] and [SEP] tags are added to the API documentation, which repre-
Fig. 6. Word cloud of Windows API documentation.

sents the beginning of sentences and sentence separation respectively. 
In one API description, eighty percent of the chosen words are masked 
by [MASK] (mask-out tokens), ten percent are kept unchanged, and 
the remaining ten percent are replaced with other words (corrupted to-

kens). Then, the multi-layer bidirectional transformer encoder within 
BERT processes the input, predicts the masked-out tokens, and outputs 
a probability for a particular token 𝑡 = [MASK] via a fully connected 
layer followed by the last transformer encoder. The cross-entropy loss 
function is formalized as:

𝐿𝑏𝑒𝑟𝑡(𝜃𝑏) = −
𝑀∑
𝑖=1

log(𝑚 =𝑚𝑖|𝜃𝑏),𝑚𝑖 ∈ [1,2, ..., |𝑀|], (1)

where 𝜃𝑏 represents the parameters of the transformer encoder and 
output layer within BERT, and 𝑀 denotes the collection of masked 
tokens during the training phase. In each self-attention layer within 
BERT, an input token updates its embedding by computing the attention 
weights with other connected tokens’ embeddings. In this way, each to-

ken’s embedding captures context-sensitive semantic information and 
changes with its location and context. Thus, the BERT model can learn 
the semantic information of API documentation. When pre-training is 
completed, we input the API’s corresponding official functionality de-

scription into the BERT model and treat the hidden state of the last layer 
as the semantic embedding of that API.

Specifically, the original API documentation contains additional 
words such as the API name “The NotifyAddrChange function...”, abbrevi-

ations “(ARP)”, annotations “(Unicode)”, etc., which are meaningless to 
the functional description and are not represented in nature language. 
We therefore remove these additional words to ensure that the BERT 

model could accurately capture the API semantic. Alternatively, we 
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Fig. 7. Pre-trained BERT with MLM task for API documentation.

Fig. 8. API Graph Structure Modeling with GAT.
leverage the one-hot encoding and Word2vec static embedding mech-

anism to generate API node attributes directly from the collected API 
sequences. Next, we compare the BERT encoding mechanism with the 
above two mechanisms to highlight the importance of semantic infor-

mation.

3.3. GNN classifier

After the processing of the API2Vec Embedding Layer component, we 
obtain a number of dynamic API graphs with corresponding node at-

tributes. Then, the GAT [29] classifier is trained on these API graphs 
to extract the structural information and further perform Windows mal-
5

ware detection. GAT is a graph neural network based on an attention-
based message-passing mechanism. This attention mechanism allows 
GAT to adaptive allocate attention weights to neighbor nodes. Next, it 
leverages the weighted sum of neighbor nodes to update the represen-

tation of the current node. In addition, GAT has the advantage of strong 
generalization for directed graphs.

The network structure of the GAT is shown in Fig. 8. As shown in 
Fig. 8, at first, each API’s official documentation within the API graph 
is fed into BERT to extract semantic embedding. Then, the API node 
embeddings and API graph structure are used as the input of GAT to 
compute graph embedding with structure and semantic information. 
During the iterative process of every layer within GAT, the semantic 
embedding of an API node is passed to its neighbor nodes. With the 

help of the multi-head attention mechanism, each API node can focus 
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on more critical neighbor nodes. Given two connected API nodes 𝑖 and 
𝑗, the attention weight 𝛼 at attention head 𝑡 and 𝑙-th layer structure is 
calculated according to the following formula:

𝛼𝑡𝑖,𝑗 =
exp(ReLU(𝐹𝑎[𝑊𝑡𝐻

𝑙
𝑖
||𝑊𝑡ℎ

𝑙
𝑗
]))

∑
𝑐∈𝑅𝑖

exp(ReLU(𝐹𝑎[𝑊𝑡𝐻
𝑙
𝑖
||𝑊𝑡ℎ

𝑙
𝑐]))

, (2)

where ℎ𝑙 denotes the hidden representation of an API node at the 𝑙-
th layer, ℎ0 equals the semantic embedding of an API node generated 
by the BERT model, 𝑊𝑚 represents the learnable parameters at 𝑡-th 
attention head, 𝐹𝑎 is a feedforward neural network, ReLU indicate the 
rectifier activation function, || denotes the concatenation operation, and 
𝑅𝑖 represents the neighbor nodes of API node 𝑖. Then, the update pro-

cess of each API node’s embedding based on the attention mechanism 
is formalized as follows:

ℎ𝑙+1
𝑖

= ‖𝑇
𝑡=1𝜎(

∑
𝑗∈𝑅𝑖

𝛼𝑡𝑖,𝑗𝑊𝑡ℎ
𝑙
𝑗 ), (3)

where 𝑇 denotes the number of attention heads, 𝑡 represents the 𝑡-th 
attention head. Finally, GAT updates the API node embeddings of the 
API graph and sums the graph semantic embedding 𝑠𝐺 as follows:

𝑠𝐺 =
𝑁𝐺∑
𝑖=0

ℎ𝐿𝑖 . (4)

The final prediction classification is performed via a Multilayer Percep-

tron (MLP) model, which can be represented as:

𝑌 = MLP(𝑠𝐺|𝜃𝑚𝑙𝑝), (5)

where 𝜃𝑚𝑙𝑝 denotes the learnable parameters of MLP model, 𝑌 repre-

sents the final classification label malware or benign.

In this paper, we leverage the GNN model to generate graph em-

bedding [30] via encoding all node hidden representations and graph 
structure information into low-dimensional space. The node hidden 
representation is transformed from aggregating local neighbor node in-

formation. DawnGNN also adopts Graph Convolutional Network (GCN) 
and Graph Isomorphism Network (GIN), and compares their perfor-

mance to identify the most effective mechanism in malware detection. 
GCN is another representative GNN, where node hidden representation 
is calculated via the following formulas:

𝐻𝑙+1 = ReLU(�̂�𝐻𝑙𝑊 𝑙) (6)

where 𝐻𝑙 indicates the hidden representation matrix at the 𝑙-layer for 
all nodes, and 𝐻0 denotes the all API node embeddings generated by 
the API2Vec Embedding Layer component. 𝑊 𝑙 is the learnable weight 
parameters of the 𝑙-layer GCN. �̂� = �̃�− 1

2 �̃��̃�− 1
2 , where �̃� denotes the 

degree matrix, and �̃� =𝐴 + 𝐼𝑠. 𝐼𝑠 is the identity matrix. GIN adopts an 
MLP model to aggregate comprehensive information, which is formal-

ized as:

ℎ𝑙+1
𝑖

= MLP𝑙+1((1 + 𝜖𝑙)ℎ𝑙𝑖 +
∑

𝑗∈𝑅(𝑖)
ℎ𝑙𝑗 ), (7)

where 𝜖𝑡 represents scalar learnable parameters.

4. Experiments and evaluation

In this section, we comprehensively evaluate our proposed system 
DawnGNN via various experiments. In the following, we first describe 
the experiment settings and dataset used in DawnGNN. And then, we 
discuss the results of our experiments.

4.1. Experimental setup and dataset

The proposed framework DawnGNN was implemented and tested 
6

on a computer running Ubuntu 20.04 (64-bit) with Intel(R) Core (TM) 
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Table I

Three datasets of API calls for experimental evaluation.

Dataset
# of Malicious

Samples

# of Benign

Samples

Released

Date

MalBehavD-V1 [26] 1,285 1,285 2022

PE_APICALLS [31] 452 101 2019

APIMDS [32] 23,080 300 2015

Table II

Statistics of generated API graphs on three datasets.

Dataset label Avg. # of Nodes Avg. # of Edges

MalBehavD-V1 malware 41.54 34.61

benign 42.61 31.22

PE_APICALLS malware 37.87 29.19

benign 19.64 28.10

APIMDS malware 108.37 30.27

benign 42.68 31.68

i7-12700 CPU @ 2.10 GHz, 16.0 GB RAM, NVIDIA RTX 3060, and 512 
GB for the hard disk drive. DawnGNN was implemented in Python pro-

gramming language version 3.8.10 with PyTorch 2.0.0 and Transform-

ers 4.28.1 framework and other libraries such as Scikit-learn, Numpy, 
Pandas, and Requests have been also used. The framework takes se-

quences of API calls extracted from Windows exe files as input.

We collected three existing datasets of malicious and normal API 
calls for our experimental evaluation. The information of these datasets 
is summarized in Table I. As described in Section 3.1, we generate API 
graphs based on collected run-time API call sequences. The statistics 
of generated API graphs on three datasets are shown in Table II. From 
Table II, we can observe that the API graphs are sparse forms, which 
is suitable for graph classification tasks. Using different datasets allows 
us to evaluate the malware detection performance of DawnGNN from 
multiple dimensions. Specifically, we randomly shuffle the dataset and 
split 80% for the training, 10% for validation, and the rest 10% for 
testing.

4.2. Measure metrics

We evaluate the Windows malware detection performance of 
DawnGNN with the following five metrics: precision, recall, true nega-

tive rate, accuracy, and F1-score. These metrics are computed via true 
positive (TP), true negative (TN), false positive (FP), and false negatives 
(FN). In the Windows malware detection scene, TP denotes the count 
of correctly identified malicious exe files, and TN denotes the count of 
correctly detected benign exe files. FP indicates the count of misidenti-

fied malicious exe files, and FN denotes the count of missed malicious 
exe files. The above measure metrics are calculated as follows:

Precision = TP

TP + FP
(8)

Recall = TP

TP+ FN
(9)

True negative rate (TNR) = TN

TN+ FP
(10)

Accuracy (Acc) = TP + TN

TP + TN+ FP+ FN
(11)

F1-score (F1) = 2 × Precision× Recall

Precision+ Recall
(12)

4.3. Performance of malware detection

In this paper, DawnGNN performs Windows malware detection via 
graph neural network and BERT-based semantic enhanced mechanism. 
Therefore, in this experiment, we comprehensively evaluate the effec-
tiveness of the two main components.
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Table III

Detection performance comparison with different detection methods in 
dataset MalBehavD-V1.

Detection method Precision Recall TNR Acc F1

one-hot + RF 0.9009 0.9494 0.8908 0.9203 0.9231

one-hot + LSTM 0.9150 0.9469 0.9106 0.9283 0.9295

one-hot + GAT 0.9195 0.9586 0.9074 0.9339 0.9368

Word2Vec + LSTM 0.9323 0.9661 0.9277 0.9441 0.9475

Word2Vec + GAT 0.9559 0.9532 0.9436 0.9432 0.9543

BERTsmall + LSTM 0.9609 0.9584 0.9512 0.9508 0.9595

BERTsmall + GAT 0.9667 0.9756 0.9527 0.9607 0.9683

BERTbase + LSTM 0.9632 0.9615 0.9553 0.9535 0.9618

BERTbase + GAT 0.9697 0.9788 0.9556 0.9638 0.9711

The BERTsmall and BERTbase represent different versions small and base

of the pre-trained BERT encoding mechanism.

Firstly, we compare the BERT-based encoding mechanism with one-

hot and Word2Vec-based encoding methods to highlight the effective-

ness of semantic information extracted from API documentation. In the 
one-hot encoding method, each API call is transformed into a binary 
vector where each position represents a unique API call. The dimension 
of the binary vector is equal to the count of all collected APIs. In the 
Word2Vec-based encoding method, we treat each API call as a word 
and use a neural network model to learn word associations from a large 
set of API sequences.

Next, we compare the graph feature-based detection method with 
the statistical and sequence feature-based detection methods to illus-

trate the effectiveness of the design of graph feature learning. We 
combine the one-hot vector representation of API call sequences with 
the Random Forest (RF) model as the statistical feature-based detection 
method. We leverage the long short-term memory (LSTM) model to han-

dle API sequences, which constructs the typical sequence feature-based 
detection method. In particular, the LSTM model requires API encoding 
mechanisms before inputting API sequences, which could be one of the 
three encoding mechanisms.

Specifically, we compare the detection methods mentioned above 
in the symmetric dataset MalBehavD-V1. We set the Word2Vec and RF 
algorithms in the default setting. For the BERT-based encoding mech-

anism, we select the base and small versions according to our ex-

periment environment. Specifically, we perform the MLM task on the 
collected official functionality descriptions with bert_base_uncased and 
bert_small as the initial pre-trained model and extract the last hidden 
layer as the API embedding. The dimensions of the generated API em-

beddings are 512 and 768, respectively. As there are multiple versions 
of the BERT model and many variant models, such as RoBERTa [33] and 
SENTENCE-BERT [34], we leave the exploration of the optimal encod-

ing mechanism as a future work. For LSTM, we refer to the parameter 
settings within the existing detection method [35].

The Windows malware detection performance with different encod-

ing mechanisms and feature structures are shown in Table III. From 
Table III, we can observe that our BERT-based semantic enhanced 
mechanism improves the malware detection performance under every 
type of learning model. This illustrates that API documentation con-

tains rich semantic information for identifying Windows malware. The 
BERT in base version outperforms the small version, which illustrates 
that larger API embeddings carry more precision semantic information 
in our API documentation encoding case. In addition, the pre-trained 
BERT model has the ability to extract context-sensitive information 
from API documentation. From Table III, we can also observe that the 
graph feature learning method is superior to the statistical and sequence 
feature-based methods, in each of the three encoding mechanisms. This 
illustrates that the graph feature-based method considers the struc-

ture information, improving the detection performance compared to the 
method that only considers sequence or statistical information.

We also evaluate the effectiveness of DawnGNN with different en-

coding mechanisms in datasets PE_APICALLS and APIMDS. The Win-
7

dows malware detection performance in the two datasets is shown in 
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Table IV. From Table IV, we can observe our BERT-based encoding 
mechanism improves the malware detection performance in the two 
imbalanced datasets via semantic information extracted from API doc-

umentation. In the two datasets, the TNR is lower when compared with 
Precision and Recall. This is caused by that the count of the malware 
is far beyond the count of the benign. In addition, the model cannot 
characterize benign patterns without enough samples.

4.4. Comparison of GNN algorithms

In this section, we explore the influence of multiple GNN algorithms 
on Windows malware detection performance.

We tune hyper-parameters that significantly affect the detection 
performance according to domain knowledge to choose the optimal 
detection performance. The experiment is conducted on the dataset 
MalBehavD-V1 to eliminate the interference of imbalanced samples. 
The search range of hyper-parameters and optimal values for three GNN 
models are shown in Table V. From Table V, we can observe that the 
three GNN algorithms achieve the best performance at 100 epochs with 
a batch size of 128 and a learning rate of 0.0001. The number of graph 
neural network layers is all in multi-layers when generating the best 
performance. The optimal hidden dimensions for the three models are 
32 for GCN, 16 for GIN, and 12 for GAT The neural networks’ hidden 
dimensions achieve the best performance when GCN is 32, GIN is 16, 
and GAT is 12.

We compare the detection performance of DawnGNN by using three 
representative GNN algorithms: GCN, GIN, and GAT. The detection per-

formance comparison of three GNN algorithms is shown in Table VI. 
From Table VI, we can observe that GAT provides the best detection 
performance. The experiment results show that DawnGNN with GIN ex-

hibits superior detection performance over GCN, which illustrates that 
the adaptation of the powerful message aggregation function MLP leads 
to the improvement of GIN when compared with GCN. The GAT algo-

rithm employs an attention mechanism to adaptive aggregate important 
information from neighbor nodes. In addition, the ability to handle di-

rected graphs makes GAT more suitable for API graph scenes. Therefore, 
the DawnGNN with GAT achieves the best performance when compared 
with GIN and GCN. We also plot the detection performance variation 
rule with epochs in Fig. 9 to observe fluctuations in detection per-

formance. From Fig. 9, we can observe that our proposed Windows 
malware detection framework achieves good performance on all three 
GNN algorithms. This illustrates that the combination of GNN models 
and BERT-based enhancing mechanisms is promising in Windows mal-

ware detection.

4.5. Comparison with other approaches

In the following, we compare DawnGNN with existing Windows 
malware detection approaches to verify the effectiveness of our pro-

posed detection performance on public datasets.

We examine the performance of the DawnGNN framework against 
other existing detection approaches based on API call sequences ex-

tracted from exe files and comparative results are presented in Ta-

ble VII. First, we compare DawnGNN against MalDy [36] and MalDet-

Conv [26] on dataset MalBehavD-V1 and PE_APICALLS. MalDy pro-

posed to leverage h-grams, feature hashing, and Term Frequency–

Inverse Document Frequency (TF-IDF) to vectorize the behavior reports. 
Then, an ensemble prediction framework is constructed to perform 
precise malware detection. MalDetConv designed a new automated 
behavior-based detection framework, which constructs a hybrid of Con-

volutional Neural Network (CNN) and Bidirectional Gated Recurrent 
Unit (BiGRU) models to perform high dimensional representations of 
API call sequences and then leverages a fully connected neural network 
module for malware detection. On dataset MalBehavD-V1, DawnGNN 
achieved the detection accuracy of 0.9638, creating an improvement 

of 0.79% and 0.51% detection accuracy of MalDy and MalDetConv, 
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Table IV

Detection performance comparison with different encoding mechanisms in 
dataset PE_APICALLS and APIMDS.

Dataset Encoding Precision Recall TNR Acc F1

PE_APICALLS one-hot 0.9093 0.9808 0.7246 0.9070 0.9283

Word2Vec 0.9214 1.0000 0.7917 0.9286 0.9423

BERT 0.9722 1.0000 0.8929 0.9762 0.9855

APIMDS one-hot 0.9475 1.0000 0.8013 0.9524 0.9714

Word2Vec 0.9861 1.0000 0.8413 0.9878 0.9928

BERT 0.9969 1.0000 0.8714 0.9975 0.9984

Table V

Search range of hyper-parameters and optimal values for three GNN models.

Hyper-parameters GCN GAT GIN Search Range

Learning rate 0.0001 0.0001 0.0001 {0.01, 0.001, 0.0001, 0.00001}

Batch size 128 128 128 {32, 64, 128, 256, 512}

Epochs 100 100 100 {40, 60, 80, 100, 200, 300}

Hidden layers 2 2 2 {2, 3, 4, 5}

Hidden dim 32 12 16 {8, 16, 32, 64, 128} for GCN and GIN

Attention heads - 12 - {6, 8, 10, 12, 14, 16} for GAT

riso
Fig. 9. Detection performance compa

Table VI

The detection performance comparison with three GNN models.

Algorithms Precision Recall TNR Acc F1

GCN 0.9401 0.9666 0.9388 0.9406 0.9524

GIN 0.9506 0.9701 0.9469 0.9509 0.9603

GAT 0.9697 0.9788 0.9556 0.9638 0.9711

respectively. The detection improvement of 2.44% and 1.89% were 
achieved by DawnGNN over the MalDy and MalDetConv framework us-

ing dataset PE_APICALLS, respectively. This illustrates the effectiveness 
of our BERT-based semantic enhancement and graph learning combi-

nation design in the Windows malware detection domain. On dataset 
APIMDS, most methods already achieve the detection accuracy of more 
than 99%. Although MalDetConv achieves the highest detection accu-

racy, DawnGNN also performs highly precise malware detection. In this 
paper, we design a documentation-augmented mechanism to verify the 
effectiveness of the semantic information extracted from the official API 
documentation. Experiment results from Table VII illustrate that our 
proposed DawnGNN reaches state-of-the-art malware detection perfor-

mance.

5. Discussion & limitation

In this paper, we focus on dynamic API-based malware detection 
and leverage API documentation information to enhance the Windows 
8

malware detection performance. Although our DawnGNN is useful and 
n of three GNN models with epochs.

effective for detecting Windows malware, there is still improvement 
in our current implementation when compared with a large number 
of existing detection approaches. DawnGNN directly constructs API 
graphs from API call sequences to capture the structural dependencies. 
This coarse-grained graph construction mechanism can be improved 
by DMalNet [17], which builds precise API call graphs using addi-

tional API parameter matching. DawnGNN identifies malware via the 
unusual call contexts, which rarely occur among benign programs. For 
indistinguishable call contexts, additional run-time behavior informa-

tion like API parameters and network activities [38] can be adopted to 
improve detection performance. Malware could leverage concealment-

based evasion method [39], such as environment analysis, delayed exe-

cution, conditional execution, etc., and disguise as benign programs to 
evade dynamic analysis. This could be mitigated by X-Force [40], which 
leverages the forced execution technique to increase the coverage of dy-

namic analysis. In addition, APT malware leverage Living-Off-The-Land 
techniques [41] to conduct nefarious actions, which could be resisted 
by provenance graph-based APT detection methods [42]. Our graph 
learning-based detection framework is inherently affected by adversar-

ial attacks [43], which could be fought against by more robust learning 
methods [44].

Except for API category and parameter information [14–16], the 
official API documentation is another unexplored information source. 
Therefore, we crawl API documentation from Microsoft’s official web-

site and leverage the BERT model to extract semantic information, 

which could be complementary to existing Windows malware detec-
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Table VII

Detection performance comparison with existing approaches.

Dataset Approaches Behavior Feature Feature Vectorization Method ML/DL Algorithm Detection Accuracy

MalBehavD-V1 MalDy [36] Behavior reports

from analysis sandbox

N-grams + Feature 
Hashing + TF-IDF

Ensemble learning 0.9559

MalDetConv [26] API call sequences Word2vec Hybrid model 
CNN-BiGRU

0.9610

DawnGNN API call sequences

+ API documentation

BERT-based semantic 
enhancement

GAT 0.9638

PE_APICALLS MalDy [36] Behavior reports

from analysis sandbox

N-grams + Feature 
Hashing + TF-IDF

Ensemble learning 0.9518

MalDetConv [26] API call sequences Word2vec Hybrid model 
CNN-BiGRU

0.9573

DawnGNN API call sequences

+ API documentation

BERT-based semantic 
enhancement

GAT 0.9762

APIMDS Amer and Zelinka [7] API call sequences Word2Vec + clustering 
similarity

Markov chain 
model

0.9990

Ki et al. [32] API call sequences DNA sequence 
alignment

Similarity 
matching

0.9980

Tran and Sato [37] API call sequences TF-IDF SVM 0.9619

MalDetConv [26] API call sequences Word2vec Hybrid model 
CNN-BiGRU

0.9993

DawnGNN API call sequences

+ API documentation

BERT-based semantic 
enhancement

GAT 0.9975
tion approaches. Mal-Bert-GCN [18] built directed process graphs from 
raw API sequences and employed GCN to perform malware detection. 
Similarly, our BERT-based semantic enhanced mechanism is orthogonal 
to inter-process interaction information. In this paper, we only extract 
the functional descriptions for an API call to extract semantic informa-

tion. Other numerous descriptions, including parameters, return value, 
remarks, and requirements, are potential useful information sources 
for malware detection when considering the boom in large language 
models [45]. We leave the design of a more comprehensive detection 
framework via deeply digging semantic information from API documen-

tation as future work.

Our documentation-augmented malware detection framework is 
based on the classic BERT-based encoding mechanism and standard 
GNN algorithm. The encoding mechanism could be improved by the

large version or other optimized models, such as RoBERTa, AL-

BERT [46], DistillBERT [47], etc. The standard GNN algorithm could be 
improved by jumping knowledge networks [48], self-supervised learn-

ing mechanisms [49], or other superior graph learning algorithms [50]. 
We leave the exploration of the optimal encoding mechanisms and 
graph learning models as future work for performing highly precision 
malware detection. We verify the effectiveness of the proposed seman-

tic enhanced mechanism on three publicly available dynamic malware 
datasets. We plan to make stronger experiment validation when obtain-

ing more recent and diverse datasets. The semantic enhanced mecha-

nism could be complementary to enhance current Windows malware 
detection methods. We leave the enhancement validation as future re-

search with open source or re-implementation versions of current de-

tection methods. In addition, the combination design of graph neural 
network and BERT-based semantic enhanced mechanism can also be 
applicable to malware detection in other platforms, like Android and 
Linux. The design of bringing in external software operation knowledge 
is promising in the malware detection domain.

6. Related work

This section provides a detailed discussion of relevant literature on 
dynamic Windows malware detection and BERT-based security detec-

tion methods.

6.1. Dynamic windows malware detection

The dynamic method executes a program in a controlled environ-
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ment which observes the execution status of the program and then 
determines whether it has malicious behaviors by examining API calls, 
network traffic, and other critical characteristics. API calls can pro-

vide valuable run-time information for identifying malicious activities. 
Therefore, researchers have proposed a lot of API call-based detection 
approaches.

Researchers have focused on extracting more effective features from 
API call sequences to perform malware detection for a long time. Fang 
et al. [51] use a hash function to encode the API call names, return 
values, and module names for obtaining more detailed behavior infor-

mation. Agrawal et al. [52] perform one-hot encoding on API call se-

quences and n-gram encoding on API parameters. Unfortunately, these 
approaches only consider partial parameters or treat all parameters as 
strings, which cannot fully explore the information from various param-

eters. Zhang et al. [10] employ different hashing strategies to encode 
API names and various parameters, which still cannot express semantic 
information. Rabadi and Teo [53] divide the API parameters into multi-

ple representation sets before applying feature hashing, which may lead 
to the loss of distinction.

Many studies have applied ML and DL models to analyze API call se-

quences. Qiao et al. [54] leverage frequent itemset mining and similar-

ity calculation to process the API names and parameters within API call 
sequences. Uppal et al. [8] select the important feature via frequency 
statistics from API call sequences, and then employ the Support Vec-

tor Machine (SVM) classifier to perform malware detection. The above 
methods ignore the relationship between API calls and can be easily 
evaded by modifying the frequency counter value. Daht et al. [55] em-

ploy n-grams to process the system API call sequences and then leverage 
the logistic regression and shallow neural network classifier to perform 
malware classification. Ndibanje et al. [56] construct feature vectors 
from API sequences and employ similarity-based statistics methods to 
detect malware. Zhang et al. [57] construct API relationship graphs 
to represent the internal relationships among various programs. Then, 
they leverage the knowledge graph embedding algorithm to input the 
API graphs into RF, Model Pool, SVM, and Deep Neural Network (DNN) 
to perform malware detection. Pascanu et al. [58] employ Recurrent 
Neural Networks (RNNs) to capture sequence relations between APIs 
and feed the outputs of RNNs into a max-pooling layer for malware clas-

sification. kolosnjaji et al. [9] leverage CNN to process consecutive API 
sequences and apply LSTM to handle time-series dependence. Agrawal 
et al. [52] propose to construct several stacked LSTMs to process API 
names and string parameters. Zhang et al. [10] design a hybrid deep 

learning framework including gate-CNNs and Bi-LSTM to process API 
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names and parameters for performing malware detection. Researchers 
try to transform the API call sequences into graphs to capture the direct 
or indirect relationship between API calls. Jiang et al. [59] transform 
the API sequences of exe files into a call graph by matching the caller-

callee relationships. Then, graph embedding techniques and stacked 
denoising autoencoders are combined to perform malware detection. 
Amer and Zelinka [7] leverage contextual similarity in API sequences 
to cluster APIs, and employ the Markov chain to capture relationships 
and perform malware detection. In this paper, we combine the GNN 
model and BERT-based semantic enhancement mechanism to classify 
API graphs and perform effective Windows malware detection.

6.2. BERT-based security detection

BERT has emerged as a powerful natural language processing model 
that is capable of learning bidirectionally contextual representations. 
With great success in various language tasks, the BERT model has been 
applied in security detection domains, such as malware detection [60], 
vulnerability detection [61], and malicious traffic detection [62], etc. 
MalBert [63] and Badr et al. [60] design a BERT-based framework to 
perform Android malware detection and classification from elements 
extracted from Android Manifest file. SmartConDetect [61] proposes to 
extract code fragments via a static analysis tool and then feed them 
into a pre-trained BERT model to perform vulnerability detection in 
smart contracts. BINSHOT [64] designs a BERT-based similarity learn-

ing architecture to perform effectively binary code similarity detection. 
The architecture adopts a weighted distance vector with a binary cross 
entropy as a loss function. ET-BERT [62] proposes a new BERT-based 
encrypted traffic representation model, which could capture deep con-

textualized datagram-level representation from large-scale unlabeled 
data and perform effective malicious traffic detection. Enimanal [65]

proposes a specialized BERT model, which leverages the declarations 
within the Linux manual to extract semantic information for each sys-

tem call, and then utilizes GNNs to perform cross-architecture IoT 
malware analysis. CoDOC [22] proposes a fusion framework to accu-

rately identify sensitive Android source and sink methods. This frame-

work leverages graph learning to encode source code information and 
a BERT-based model to extract semantic information from Android 
documentation. Similarly, in this paper, DawnGNN crawls the official 
Windows API documentation and leverages a BERT-based semantic ex-

traction mechanism to enhance malware detection.

7. Conclusion

In this paper, we propose a novel dynamic Windows malware de-

tection system using graph neural networks and a BERT-based semantic 
enhancement mechanism, called DawnGNN. It constructs API graphs 
directly from API call sequences and leverages the BERT-based model 
to extract API semantic information from official API documentation. 
By feeding the semantic information of API nodes and the directed API 
graphs into the GAT, DawnGNN performs effective Windows malware 
detection. On three public datasets, we verify that our BERT-based en-

coding mechanism improves the detection mechanism compared with 
one-hot and Word2Vec-based encoding mechanisms, and DawnGNN 
outperforms other traditional detection methods only using raw API call 
sequences. In addition, we find that the official API documentation is 
an unexplored informative source and the BERT-based documentation 
augmented mechanism is promising in Windows malware detection.
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